• Title/Summary/Keyword: Biodegradation rate

Search Result 319, Processing Time 0.027 seconds

Biodegradation of Endocrine-Disrupting Phthalates by Pleurotus ostreatus

  • Hwang, Soon-Seok;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.767-772
    • /
    • 2008
  • Biodegradation of endocrine-disrupting phthalates [diethyl phthalate (DEP), dimethyl phthalate (DMP), butylbenzyl phthalate (BBP)] was investigated with 10 white rot fungi isolated in Korea. When the fungal mycelia were added together with 100 mg/l of phthalate into yeast extract-malt extract-glucose (YMG) medium, Pleurotus ostreatus, Irpex lacteus, Polyporus brumalis, Merulius tremellosus, Trametes versicolor, and T. versicolor MrP1 and MrP13 (transformant of the Mn-repressed peroxidase gene of T. versicolor) could remove almost all of the 3 kinds of phthalates within 12 days of incubation. When the phthalates were added to 5-day pregrown fungal cultures, most fungi except I. lacteus showed the increased removal of the phthalates compared with those of the non-pregrown cultures. In both culture conditions, p. ostreatus showed the highest degradation rates for the 3 phthalates tested. BBP was degraded with the highest rates among the 3 phthalates by all fungal strains. Only 14.9% of 100 mg/I BBP was degraded by the supernatant of P. ostreatus culture in YMG medium in 4 days of incubation, but the washed or homogenized mycelium of P. ostreatus could remove 100% of BBP within 2 days even in distilled water, indicating that the initial BBP biodegradation by P. ostreatus may be attributed to mycelium-associated enzymes rather than extracellular enzymes. The biodegradation rate of BBP by the immobilized cells of P. ostreatus was almost same as that in the suspended culture. The estrogenic activity of 100 mg/I DMP decreased during biodegradation by P. ostreatus.

Ecological modeling for toxic substances - I . Numerical simulation of transport and fate of Nonylphenol in Tokyo Bay- (유해화학물질의 생태계 모델링 - I. 동경만 Nonylphenol의 환경동태 해석 -)

  • Kim Dong-Myung;Shiraishi Hiroaki
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.827-835
    • /
    • 2005
  • A three-dimensional ecological model (EMT -3D) was applied to Nonylphenol in Tokyo Bay. EMT -3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are $8.60\times 10^5\;g,\;2.19\times 10^2\;g\;and\;3.78\times 10^0\;g$ respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were $6.02\times10^3\;g/day,\;6.02\times10^2\;g/day\;and\;1.02\times10^1\;g/day$, respectively.

Cellulose Biodegradation Modeling Using Endoglucanase and β-Glucosidase Enzymes (Endoglucanase와 β-Glucosidase 효소에 의한 셀룰로오스 생분해 모델링)

  • Cho, Sun-joo;Kim, Tae-wook;Cho, Daechul
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • In this study, a biodegradation model of based on molecular cellulose was established. It is a mathematical, kinetic model, assuming that two major enzymes randomly break glycosidic bonds of cellulose molecules, and calculates the number of molecules by applying the corresponding probability and degradation reaction coefficients. Model calculations considered enzyme dose, cellulose chain length, and reaction rate constant ratio. Degradation increased almost by two folds with increase of temperature (5℃→25℃). The change of degradation was not significant over the higher temperatures. As temperature increased, the degradation rate of the molecules increased along with higher production of shorter chain molecules. As the reaction rates of the two enzymes were comparative the degree of degradation for any combinations of enzyme application was not affected much. Enzyme dose was also tested through experiment. While enzyme dose ranged from 1 mg/L to 10 mg/L, the gap between real data and model calculations was trivial. However, at higher dose of those enzymes (>15 mg/L), the experimental result showed the lower concentrations of reductive sugar than the corresponding model calculation did. We determined that the optimal enzyme dose for maximum generation of reductive sugar was 10 mg/L.

Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1 (Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해)

  • 류강은;김영백;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • Biodegradation of vanous medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by an extracellular depolymerase system from Pseudomonas sp. RY-1 was investigated under laboratoly conditions. The degradation rate of the polymers was determined by quantitative clem zone technique, enzyme (turbidity) assay, and respirometry assay. Although the enzyme system secreted by Pscudomor~as sp. RY-1 was capable of degrading all MCL-PHAs tested. its secretion was influenced by the availability of secondary carbon sources. The rate of enzymatic degradation of MCL-PHAs was dependent upou the monomeric composition of the polyesters and reduced as the chain lengths of the monomer m t s in the polyesters increased. MCL-PHAs containing C-even monomer units showed faster degradation rate than MCL-PHAs containing C-odd monomer units. Respiration rates of MCL-PHAs with C-even monomer uuts were also much faster than those of MCL-PHAs with C-odd monomer units. The degmdation rate of MCL-PHAs bearing unsaturated substituents was faster than that of mcl-PHAs without functional substituents, which is suggesting the correlation between the degradation rate and the crystallinity of MCL-PHAs.

  • PDF

A Study on Treatment of Diesel-contaminated Soils Using Fenton Reaction and Rhizosphere Microorganisms (경유 오염토양의 펜톤반응과 근권토양미생물을 이용한 처리에 관한 연구)

  • Lee Eui-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.704-708
    • /
    • 2006
  • This study was designed to investigate the effect of Fenton reaction and consecutive rhizosphere biodegradation on diesel-contaminated soil. According to the result, the TPH removal rate was increased with the concentration of hydrogen peroxide in Fenton's treatment and showed 83.5% for soybean, 81.5% for rice, and 76% for control in rhizosphere biodegradation.

  • PDF

Selection of White Rot Fungi for Biodegradation of Polychlorinated Biphenyl, and Analysis of Its Biodegradation Rate (폴리염화비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석)

  • Hong, Chang-Young;Gwak, Ki-Seob;Lee, Su-Yeon;Kim, Seon-Hong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.568-578
    • /
    • 2010
  • In this study, the possibility of biodegradation of polychlorinated biphenyls (PCBs) by various white rot fungi was evaluated, and outstanding white rot fungi for the degradation of PCBs were selected. Seven white rot fungi were used to degrade Aroclor 1254 and 1260, which are widely considered to be toxic and difficult to degrade. And the degradation rates of Aroclors by selected white rot fungi were performed by GC analysis. Through the resistance test of white rot fungi on different concentrations of PCBs, the inhibition of mycelial growth of Cystidodontia isubellina was much less than that of others, and this fungus grew faster than others, relatively. Based on this result, it was considered that C. isubellina was selected as degrading fungus for Aroclors. As a result of biodegradation rate of Aroclors by Cystidodontia isubellina, the degradation rate of Arolor 1254 was reached to 57.57% in 13 days, which showed very high degradation rate. Also the degradation rate of Aroclor 1260 by C. isubellina had a tendency of increasing along with increasing incubation day. Maximal degradation rate of Aroclor 1260 was 49.43% at 13 days. Based on this results, it indicated that in comparison with a previous study, high degradation rate was obtained by C. isubellina.

Biodegradation of Diesel by Rhodococcus fascians in Sand Column (Rhodococcus fascians를 이용한 모래 컬럼내 디젤유 분해)

  • Moon, Jun-Hyung;Koo, Ja-Ryong;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Contamination of soils, groundwater, air and marine environment with hazardous and toxic chemicals is major side effect by the industrialization. Bioremediation, the application of microorganism or microbial processes to degrade environmental contaminant, is one of the new environmental technologies. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The purpose of this study is biodegradation of diesel in sand by using Rhodococcus fascians, a microorganism isolated from petroleum contaminated soil. This study was performed in the column containing sand obtained from sea sides. Changes in biodegradability of diesel with various flow rates, inoculum sizes, diesel concentrations, and pH were investigated in sand column. The optimal condition for biodegradation of diesel by R. fascians in sand column system was initial pH 8 and air flow rate of 30 mL/min. Higher diesel degradation was achieved at larger inoculum size and the diesel degradation by R. fascians was not inhibited by diesel concentration up to 5%.

Biopile의 현장적용을 위한 유류오염토양의 생분해율 평가

  • Yoon, Jeong-Gi;Roh, Hoe-Jeong;Kim, Hyeok;Kim, Jong-Ha;Park, Jong-Gyeom;Lee, Min-Hyo;Jeong, Il-Rok;Koh, Seong-Hwan;Choi, Sang-Il
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.363-367
    • /
    • 2003
  • Batch experiments were performed to determine optimum conditions for biopile. The batch experiments results showed that 12.5 to 17.9% of moisture content was effective to biodegradation of petroleum hydrocarbon regardless of soil texture. Total heterotrophic bacteria populations in the inoculum-treated soil were greater than of the control and nutrient-amended soil in the early stage, but the populations in the inoculum and nutrient-amended soil were not different significantly from those in the latter stage regardless of soil texture. The same trend was observed for petroleum hydrocarbon degrading bacteria populations. The results of the biodegradation capacity experiments showed that there was a decline in the TPH concentrations during the experiments and no significant difference on the biodegradation was observed by treatment in silt soil. Changes of n-C17/pristane and n-C18/phytane ratios in all treated soil were significantly more than those of control. This is a strong indication of biodegradation. The TPH removal rate was calculated at 60% in all treated soil.

  • PDF

A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms (토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구)

  • Chung, Woo-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.

Enhancement of Phenanthrene Solubilization and Biodegradation with Biosurfactants Produced by Rhodococcus erythropolis (Rhodococcus erythropolis를 통하여 얻어진 생계면활성제에 의한 phenanthrene의 용해도 및 생분해능력 향상)

  • Chang, Jae-Soo;Song, Changsoo;Cha, Daniel K.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.724-730
    • /
    • 2004
  • Effects of the biosurfactant produced by Rhodococcus erythropolis on the solubilization and biodegradation of phenanthrene were investigated. Based on surface tension measurements, the average critical micelle concentration of the biosurfactant was estimated to be about 16mg TOC/L. The apparent solubility of phenanthrene increased linearly with the addition of biosurfactants above the CMC, and the concentration of solubilized phenanthrene was 38.9mg/L in 322mg TOC/L biosurfactant solution. The weight-solubilization ratio of biosurfactants for phenanthrene was approximately 118.8mg/g, this value was over 5 times greater than that of sodium dodecyl sulfate. Using a known phenanthrene degrader, batch phenanthrene biodegradation experiments were conducted with and without biosurfactants in liquid culture. The rate and extent of phenanthrene mineralization by the phenanthrene degrader with biosurfactants were much greater than those without biosurfactants. The greater phenanthrene mineralization observed in the presence of biosurfactants is attributed to the increased phenanthrene concentration in the aqueous culture due to the partitioning of the compound to biosurfactant micelles. The biosurfactant did not exhibit any toxic effect on mineralization of glucose by the phenanthrene-degrader.