• Title/Summary/Keyword: Biodegradation rate

Search Result 319, Processing Time 0.022 seconds

Degradation of Phenanthrene by Bacterial Strains Isolated from Soil in Oil Refinery Fields in Korea

  • KIM JEONG DONG;SHIM SU HYEUN;LEE CHOUL GYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.337-345
    • /
    • 2005
  • The degradation of phenanthrene, a model PAH compound, by microorganisms either in the mixed culture or individual strain, isolated from oil-contaminated soil in oil refmery vicinity sites, was examined. The effects of pH, temperature, initial concentration of phenanthrene, and the addition of carbon sources on biodegradation potential were also investigated. Results showed that soil samples collected from four oil refinery sites in Korea had different degrees of PAH contamination and different indigenous phenanthrene-degrading microorganisms. The optimal conditions for phenanthrene biodegradation were determined to be 30$^{circ}C$ and pH 7.0. A significantly positive relationship was observed between the microbial growth and the rate of phenanthrene degradation. However, the phenanthrene biodegradation capability of the mixed culture was not related to the degree of PAH contamination in soil. In low phenanthrene concentration, the growth and biodegradation rates of the mixed cultures did not increase over those of the individual strain, especially IC10. High concentration of phenanthrene inhibited the growth of microbial strains and biodegradation of phenanthrene, but was less inhibitory on the mixed culture. Finally, when non-ionic surfactants such as Brij 30 and Brij 35 were present at the level above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited and delayed by the addition of Triton X100 and Triton N101.

Biodegradation Kinetics of 4-Chlorophenol by Pseudomonas sp. EL-091S (Pseudomonas sp. EL-091S에 의한 4-Chlorophenol의 분해 Kinetics)

  • Son, Jun-Seog;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.95-102
    • /
    • 1993
  • In order to find the most fitted biodegradation model, biodegradation models to the initial 4-chlorophenol concentrations were investigated and had been fitted by the linear regression. The degrading bacterium, EL-091S, was selected among phenol-degraders. The strain was identified with Pseudomows sp. from the result of taxonomical studies. The optimal condition for the biodegradation was as fellows: secondary carbon source, concentration of ammonium nitrate, temperature and pH were 200mg/l fructose, 600 mg/l, $30^{\circ}C$ and 7.0 respectively. The highest degradation rate of the 4-chlorophenol was about 58% for 24 hours incubation on the optimal condition. Biodegradation kinetics model of 5 mg/l 4-Chlorophenol, 10 mg/l 4-chlorophenol and 50 mg/l 4-chlorophenol were fitted the zero order kinetics model, respectively. Key Words : 4-chlorophenol, Pseudomonas sp., zero order kinetics model.

  • PDF

Biodegradation of Poly (3-hydroxybutyrate) by Penicillium pinophilum (Penicillium pinophilum에 의한 Poly (3-hydroxybutyrate)의 생분해)

  • Kim, Mal-Nam;Kang, Eun-Jung
    • The Korean Journal of Mycology
    • /
    • v.23 no.4 s.75
    • /
    • pp.348-353
    • /
    • 1995
  • Biodegradability of poly (3-hydroxybutyrate) (PHB) by Penicillium pinophilum was investigated by the modified Sturm Test. The biodegradability measurement by this method was more reproducible than other conventional activated sludge methods. Optimum inoculum size for the PHB biodegradation was 1% (v/v). The degradation appeared to occur not only on the sample surface but also inside the sample because the biodegradation did not increase quite proportionally with the sample surface area. The biodegradation rate increased to an asymptotic value as the nitrogen content in the test medium increased, indicating the nitrogen source was needed for the synthesis of the PHB depolymerase.

  • PDF

Evaluation of Biodegradation Kinetic in Biological Activated Carbon (BAC) Process for Drinking Waste Treatment : Effects of EBCT and Water Temperature (정수처리용 생물활성탄 공정에서 Halonitromethanes (HNMs)의 생물분해 동력학 평가 : EBCT 및 수온의 영향)

  • Son, Hee-Jong;Kang, So-Won;Yoom, Hoon-Sik;Ryu, Dong-Choon;Cho, Man-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.404-411
    • /
    • 2015
  • In this study, the effects of empty bed contact time (EBCT) and water temperature on the biodegradation of 9 halonitromethanes (HNMs) in biological activated carbon (BAC) process were investigated. Experiments were conducted at three water temperatures ($10^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$) and three EBCTs (5, 10 and 15 min). Increasing EBCT and water temperature increased the biodegradation efficiency of HNMs in BAC column. Dibromochloronitromethane (DBCNM) and tribromonitromethane (TBNM) showed the highest biodegradation efficiency, but chloronitromethane (CNM) and dichloronitromethane (DCNM) were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 7 HNMs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants ($k_{bio}$) of 7 HNMs ranged from $0.0797{\sim}0.7657min^{-1}$ at $10^{\circ}C$ to $0.1245{\sim}1.8421min^{-1}$ at $25^{\circ}C$. By increasing the water temperature from $10^{\circ}C$ to $25^{\circ}C$, the biodegradation rate constants ($k_{bio}$) were increased 1.6~2.4 times.

Effect of Ethanol on Aerobic Biodegradation of Benzene, Toluene, and Ethylbenzene by Rhodococcus sp. EH831 (Rhodococcus sp. EH831에 의한 벤젠, 톨루엔 및 에틸벤젠의 호기성 생분해에 미치는 에탄올의 영향)

  • Lee, Seung-Ha;Lee, Eun-Hee;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.243-247
    • /
    • 2009
  • The usage of ethanol (EtOH)-blended gasoline (gasohol), has been increasing in recent years. EtOH has influence on the distribution and biodegradation of aromatic compounds such as BTEX (benzene (B), toluene (T), ethylbenzene (B), and xylene (X)) that are gasoline compositions. In this study, the effect of EtOH on the aerobic biodegradation of B, T and E was investigated using a BTEX and EtOH-degrading bacterium, Rhodococcus sp. EH831. The degradation rates of B in the conditions of 1:1, 1:4, and 1:0.25 mixtures with EtOH (B:EtOH, mol:mol) were ranged from $3.82{\pm}0.20$ to $5.00{\pm}0.37{\mu}mol{\cdot}g-dry$ cell wight $(DCW)^{-1}{\cdot}h^{-1}$. The degradation rate of T was the fastest in the 1:0.25 mixture ($6.63{\pm}0.06{\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$), and it was the lowest in the 1:4 mixture ($4.41{\pm}0.04{\mu}mol{\cdot}DCW^{-1}{\cdot}h^{-1}$). The degradation rates of E were increased with increasing the addition amount of EtOH: The degradation rate of E was the highest in the 1:4 mixture ($1.60{\pm}0.03{\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$), and the rates were $1.42{\pm}0.06$, $1.30{\pm}0.01$, and $1.01{\pm}0.30{\mu}mol{\cdot}g-DCW^{-1}{\cdot}h^{-1}$ in the 1:1, 1:0.25, 1.0 mixtures, respectively. In conclusion, the biodegradation of B, T, E by Rhodococcus sp. EH831 was not significantly inhibited by the co-existence of EtOH.

Effect of Electron Acceptors on the Anaerobic Biodegradation of BTEX and MTBE at Contaminated Sites (전자 수용체가 BTEX, MTBE로 오염된 토양의 혐기성 자연정화에 미치는 영향)

  • Kim, Won-Seok;Kim, Ji-Eun;Baek, Ji-Hye;Sang, Byoung-In
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.403-409
    • /
    • 2005
  • Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by BTEX and MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc. In oil-contaminated environments, anaerobic biodegradation of BTEX and MTBE depended on the concentration and distribution of terminal electron acceptor. In this study, effect of electron acceptor on the anaerobic biodegradation for BTEX and MTBE-contaminated soil was investigated. This study showed the anaerobic biodegradation of BTEX and MTBE in two different soils by using nitrate reduction, ferric iron reduction and sulfate reduction. The soil samples from the two fields were enriched for 65 days by providing BTEX and MTBE as a sole carbon source and nitrate, sulfate or iron as a terminal electron acceptor. This study clearly shows that degradation rate of BTEX and MTBE with electron acceptors is higher than that without electron acceptors. Degradation rate of Ethylbenzene and Xylene is higher than that of Benxene, Toluene, and MTBE. In case of Benzene, Ethylbenzene, and MTBE, nitrate has more activation. In case of Toluene and Xylene, sulfate has more activation.

Biodegradation of Pentachlorophenol by Various White Rot Fungi (수질분해균(水質分解菌)에 의한 Pentachlorophenol의 미생물분해(微生物分解))

  • Choi, In-Gyu;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 1998
  • In this research, 7 species of white rot fungi were used for determining the resistance against pentachlorophenol (PCP). Three fungi with good PCP resistance were selected for evaluating the biodegradability, and biodegradation mechanism by HPLC and GC/MS spectrometry. Among 7 fungi, there were significant differences on PCP resistance on 4 different PCP concentrations. In the concentrations of 50 and 100ppm ($\mu$g of PCP per g of 2% malt extract agar), most fungi were easily able to grow, and well suited to newly PCP-added condition, but in that of more than 250ppm, the mycelia growths of Ganoderma lucidum 20435, G. lucidum 20432, Pleurotus ostreatus, and Daldinia concentrica were significantly inhibited or even stopped by the addition of PCP to the culture. However, Trametes versicolor, Phanerochaete chrysosporium, and Inonotus cuticularis still kept growing at 250ppm, indicating the potential utilization of wood rot fungi to high concentrated PCP biodegradation. Particularly, P. chrysosporium even showed very rapid growth rate at more than 500ppm of PCP concentration. Three selected fungi based on the above results showed an excellent biodegradability against PCP. P. chrysosporium degraded PCP up to 84% on the first day of incubation, and during 7 days, most of added PCP were degraded. T. versicolor also showed more than 90% of biodegradability at 7th day, and even though the initial stage of degradation was very slow, I. cuticularis has been approached to 90% at 21 st day after incubation with dense growing pattern of mycelia. Therefore, the PCP biodegradability was definitely dependent on the rapid suitability of fungi to newly PCP-added condition. In addition, the PCP biodegradation by filtrates of P. chrysosporium, T. versicolor, and I. cuticularis was very minimal or limited, suggesting that the extracellular enzyme system may be not so significantly related to the PCP biodegradation. Among the biodegradation metabolites of PCP, the most abundant one was pentachloroanisole which resulted in a little weaker toxicity than PCP, and others were tetrachlorophenol, tetrachloro-hydroquinone, benzoic acid, and salicylic acid, suggesting that PCP may be biodegraded by several sequential reactions such as methylation, radical-induced oxidation, dechlorination, and hydroxylation.

  • PDF

Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium (고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF

Biodegradation of Blood Lipid Lower Agents (BLLAs) in Biological Activated Carbon (BAC) Process (BAC 공정에서의 고지혈증 치료제 생물분해 특성)

  • Yoom, Hoon-Sik;Son, Hee-Jong;Ryu, Dong-Choon;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.124-131
    • /
    • 2017
  • In this study, We investigated the effects of water temperature and empty bed contact time (EBCT) on the biodegradability of 8 blood lipid lower agents (BLLAs) in biological activated carbon (BAC) process. Experiments were conducted at three water temperatures ($8^{\circ}C$, $16^{\circ}C$ and $24^{\circ}C$) and three EBCTs (5 min, 10 min and 15 min). Increasing water temperature and EBCT increased the biodegradation efficiency of BLLAs in BAC process. Simvastatin and fenofibrate were the highest biodegradation efficiency, but atorvastatin and clofibric acid were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 8 BLLAs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants ($k_{bio}$) of clofibric acid and atorvastatin were $0.0075min^{-1}$ and $0.0122min^{-1}$ at $8^{\circ}C$, and were $0.0540min^{-1}$ and $0.0866min^{-1}$ at $24^{\circ}C$, respectively. By increasing the water temperature from $8^{\circ}C$ to $24^{\circ}C$, the biodegradation rate constants ($k_{bio}$) were increased 7.1~7.2 times.

Influence of Control Variables on the Aerobic Biodegradation Performance in Bin Composting System (회분식 퇴비화 시스템에서 제어변수가 호기성 분해성능에 미치는 영향)

  • 박금주;홍지형
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.359-364
    • /
    • 1999
  • A theoretical model was developed to evaluate the influence of control variables on the composting performance in a bin composting system. The model was verified using pilot scale composting system. Simulation of the composting temperature according to air flow rate and composting bin size was conducted using the mathematical model. High composting temperature above 55$^{\circ}C$ needed to kill a pathogen was maintained for longer periods as the air flow rate was lower and the bin size was larger. Optimum air flow rate was 0.77L/min/kg.DM for the experimental pilot scale bin system. The size of composting bin should be large enough to maintain the higher composting temperature for required periods.

  • PDF