DOI QR코드

DOI QR Code

Evaluation of Biodegradation Kinetic in Biological Activated Carbon (BAC) Process for Drinking Waste Treatment : Effects of EBCT and Water Temperature

정수처리용 생물활성탄 공정에서 Halonitromethanes (HNMs)의 생물분해 동력학 평가 : EBCT 및 수온의 영향

  • Son, Hee-Jong (Water Quality Institute, Water authority, Busan) ;
  • Kang, So-Won (Department of Bio-chemical Engineering, Friedrich-Alexander University) ;
  • Yoom, Hoon-Sik (Water Quality Institute, Water authority, Busan) ;
  • Ryu, Dong-Choon (Water Quality Institute, Water authority, Busan) ;
  • Cho, Man-Gi (Department of Global Biotechnology, Dong-Seo University)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 강소원 (프리드리히-알렉산더대학교 생명화학공학과) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소) ;
  • 조만기 (동서대학교 글로벌 생명공학과)
  • Received : 2015.06.18
  • Accepted : 2015.07.29
  • Published : 2015.07.31

Abstract

In this study, the effects of empty bed contact time (EBCT) and water temperature on the biodegradation of 9 halonitromethanes (HNMs) in biological activated carbon (BAC) process were investigated. Experiments were conducted at three water temperatures ($10^{\circ}C$, $15^{\circ}C$ and $25^{\circ}C$) and three EBCTs (5, 10 and 15 min). Increasing EBCT and water temperature increased the biodegradation efficiency of HNMs in BAC column. Dibromochloronitromethane (DBCNM) and tribromonitromethane (TBNM) showed the highest biodegradation efficiency, but chloronitromethane (CNM) and dichloronitromethane (DCNM) were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 7 HNMs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants ($k_{bio}$) of 7 HNMs ranged from $0.0797{\sim}0.7657min^{-1}$ at $10^{\circ}C$ to $0.1245{\sim}1.8421min^{-1}$ at $25^{\circ}C$. By increasing the water temperature from $10^{\circ}C$ to $25^{\circ}C$, the biodegradation rate constants ($k_{bio}$) were increased 1.6~2.4 times.

생물활성탄(BAC) 공정에서의 공탑 체류시간(EBCT) 및 수온의 변화에 따른 9종의 halonitromethanes (HNMs)류들의 생물분해 특성을 평가하였다. 수온 $10^{\circ}C$$25^{\circ}C$에서 EBCT를 5분~15분까지 변화시켜 실험하였다. 생물활성탄 공정에서 HNMs류 9종의 생물분해율은 EBCT와 수온에 따라 큰 영향을 받았으며 EBCT와 수온이 증가할수록 생물분해율이 증가하였으며, HNMs류들의 종류에 따른 생물활성탄 공정에서의 생물분해율은 DBCNM과 TBNM이 가장 높았고, CNM과 DCNM이 가장 낮았다. DBCNM과 TBNM을 제외한 HNMs류 7종에 대해 BAC 공정에서의 생물분해 속도상수($k_{bio}$)는 수온이 $10^{\circ}C$에서 $25^{\circ}C$로 상승하였을 경우, $0.0797{\sim}0.7657min^{-1}$에서 $0.1245{\sim}1.8421min^{-1}$로 증가하여 1.6~2.4배 정도 증가하였다.

Keywords

References

  1. Son, H. J., Roh, J. S., Kim, S. G., Bae, S. M. and Kang, L. S., "Removal characteristics of chlorination disinfection by-products by activated carbons," J. Korean Soc. Environ. Eng., 27(7), 762-770(2005).
  2. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R. and De Marini, D. M., "Occurrence, genotoxicity, and carcinogenecity of regulated and emerging disinfection byproducts in drinking water: a review and roadmap for research," Mutat. Res., 636, 178-242(2007). https://doi.org/10.1016/j.mrrev.2007.09.001
  3. Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. J. and McKague, A. B., "Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell cytotoxicity and genotoxicity," Environ. Sci. Technol., 38, 62-68(2004). https://doi.org/10.1021/es030477l
  4. Cole, S. K., Cooper, W. J., Fox, R. V., Gardinali, P. R., Mezyk, S. P., Mincher, B. J. and O'Shea, K. E., "Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (chloropicrin)," Environ. Sci. Technol., 41, 863-869(2007). https://doi.org/10.1021/es061410b
  5. Richardson, S. D., "Disinfection by-products and other emerging contaminants in drinking water," Trends Anal. Chem., 22, 666-684(2003). https://doi.org/10.1016/S0165-9936(03)01003-3
  6. Woo, Y. T., Lai, D., McLain, J. L., Manibusan, M. K. and Dellarco, V., "Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products," Environ. Health Perspect., 110, 75-87(2002). https://doi.org/10.1289/ehp.02110s175
  7. Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., Onstad, G. D. and Thruston, A. D., "Occurrence of a new generation of disinfection byproducts," Environ. Sci. Technol., 40(23), 7175-7185(2006). https://doi.org/10.1021/es060353j
  8. Krasner, S. W., Westerhoff, P., Chen, B. Y., Rittmann, B. E. and Amy, G., "Occurrence of disinfection byproducts in United States wastewater treatment plant effluents," Environ. Sci. Technol., 43(21), 8320-8325(2009). https://doi.org/10.1021/es901611m
  9. Liviac, D., Wagner, E. D., Mitch, W. A., Altonji, M. J. and Plewa, M. J., "Genotoxicity of water concentrates from recreational pools after various disinfection methods," Environ. Sci. Technol., 44(9), 3527-3532(2010). https://doi.org/10.1021/es903593w
  10. Bond, T., Huang, J., Templeton, M. R. and Graham, N., "Occurrence and control of nitrogeneous disinfection by-products in drinking water-a review," Water Res., 45, 4341-4354(2011). https://doi.org/10.1016/j.watres.2011.05.034
  11. Williams, D. T., LeBel, G. L. and Benoit, F. M., "Disinfection by-products in Canadian drinking water," Chemosphere, 34, 299-316(1997). https://doi.org/10.1016/S0045-6535(96)00378-5
  12. Simpson, K. L. and Hayes, K. P., "Drinking water disinfection by-products: an Australian perspective," Water Res., 32, 1522-1528(1998). https://doi.org/10.1016/S0043-1354(97)00341-2
  13. Montesinos, I., Cardador, M. J. and Gallego, M., "Determination of halonitromethanes in treated water," J. Chromatogr. A, 1218, 2497-2504(2011). https://doi.org/10.1016/j.chroma.2011.02.056
  14. Chiang, P. C., Chang, E. E., Chuang, C. C., Liang, C. H. and Huang, C. P., "Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination," Chemosphere, 80, 327-333(2010). https://doi.org/10.1016/j.chemosphere.2010.03.053
  15. Reckhow, D. A., Linden, K. G., Kim, J., Shemer, H. and Makdissy, G., "Effect of UV treatment on DBP formation," J. Am. Water Works Assoc., 102, 100-113(2010).
  16. Choi, J. and Richardson, S. D., "Formation of halonitromethanes in drinking water," Proceedings of AWWA Water Quality Technology Conference, AWWA, San Antonio, Texas, (2004).
  17. Joo, S. H. and Mitch, W. A., "Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines," Environ. Sci. Technol., 41, 1288-1296(2007). https://doi.org/10.1021/es0612697
  18. Fang, J., Ma, J., Yang, X. and Shang, C., "Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa," Water Res., 44 (6), 1934-1940(2010). https://doi.org/10.1016/j.watres.2009.11.046
  19. Hu, J., Song, H., Addison, J. W. and Karanfil, T., "Halonitromethane formation potentials in drinking waters," Water Res., 44, 105-114(2010). https://doi.org/10.1016/j.watres.2009.09.006
  20. Bond T., Templeton M. R., Rifai O., Ali H. and Graham N. J. D., "Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates," Chemosphere, 111, 218-224(2014). https://doi.org/10.1016/j.chemosphere.2014.03.090
  21. Chuang, Y. and Tung, H., "Formation of trichloronitromethane and dichloroacetonitrile in natural waters: precursor characterization, kinetics and interpretation," J. Hard. Mater., 283, 218-226(2015). https://doi.org/10.1016/j.jhazmat.2014.09.026
  22. Zhou, S., Zhu, S., Shao, Y. and Gao, N., "Characteristics of C-, N-DBOs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation," Water Res., 72, 381-390(2015). https://doi.org/10.1016/j.watres.2014.11.023
  23. Mezyk, S. P., Mincher, B. J., Cooper, W. J., Cole, S. K., Fox, R. V. and Gardinali, P. R., "Kinetic model for the radical degradation of tri-halonitromethane disinfection byproducts in water," Radit. Phys. Chem., 81, 1646-1652(2012). https://doi.org/10.1016/j.radphyschem.2012.05.009
  24. Fang, J., Liang, L. and Shang, C., "Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis," Water Res., 47, 1257-1266(2013). https://doi.org/10.1016/j.watres.2012.11.050
  25. Seo, C. D., Son, H. J., Jung, J. M., Choi, J. T., Ryu, D. C. and Jang, S. H., "Biodegradation of UV filters in biological activated carbon (BAC) process : biodegradation kinetic," J. Korean Soc. Environ. Eng., 36(11), 739-746(2014). https://doi.org/10.4491/KSEE.2014.36.11.739
  26. Seo, C. D., Son, H. J., Ryu, D. C., Kang, S. W. and Jang, S. H., "Biodegradation of synthetic fragrances in biological activated carbon (BAC) process : biodegradation kinetic," J. Korean Soc. Environ. Eng., 36(12), 858-864(2014). https://doi.org/10.4491/KSEE.2014.36.12.858
  27. Seo, I. S., Son, H. J., Choi, Y. I., Ahn, W. S. and Park, C. K., "Removal characteristics of nitrogenous organic chlorination disinfection by-products by activated carbons and biofiltration," J. Korean Soc. Environ. Eng., 29(2), 184-191(2007).
  28. Son, H. J., Yoo, S. J., Yoo, P. J. and Jung, C. W., "Effects of EBCT and water temperature on HAA removal using BAC process," J. Korean Soc. Environ. Eng., 30(12), 1255-1261(2008).
  29. Son, H. J., Yoo, S. J., Roh, J. S. and Yoo, P. J., "Biological activated carbon (BAC) process in water treatment," J. Korean Soc. Environ. Eng., 31(4), 308-323(2009).
  30. Goel, S., Hozalski, R. M. and Bouwer, E. J., "Biodegradation of NOM: effect of NOM source and ozone dose," J. Am. Water Works Assoc., 87(1), 90-105(1995).
  31. Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Korean Soc. Environ. Eng., 31(11), 989-996(2009).
  32. Son, H. J., Roh, J. S. and Kang, L. S., "Determination of BDOCrapid and BDOCslow using batch bio-reactor," J. Korean Soc. Water Qual., 20(4), 357-364(2004).
  33. Kang, S. W., Son, H. J., Seo, C. D., Kim, K. A. and Choi, J. T., "Analysis of trace levels of halonitromethanes (HNMs) in water using headspace-SPME and GC-ECD," J. Korean Soc. Environ. Eng., submitted.
  34. Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Korean Soc. Environ. Eng., 31(11), 989-996(2009).
  35. Zhou, H. and Xie, Y., "Using BAC for HAA removal-part 1: batch study," J. Am. Water Works Assoc., 94(4), 194-200(2002).
  36. Xie, Y. and Zhou, H., "Use of BAC for HAA removal-part 2: column study," J. Am. Water Works Assoc., 94(5), 126-134(2002).

Cited by

  1. Evaluation of Biodegradation Characteristics and Kinetic of Parabens and Halogenated Parabens in Biological Activated Carbon (BAC) Process vol.40, pp.7, 2018, https://doi.org/10.4491/KSEE.2018.40.7.290