DOI QR코드

DOI QR Code

BAC 공정에서의 고지혈증 치료제 생물분해 특성

Biodegradation of Blood Lipid Lower Agents (BLLAs) in Biological Activated Carbon (BAC) Process

  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소) ;
  • 유평종 (부산광역시 상수도사업본부 수질연구소)
  • 투고 : 2015.07.24
  • 심사 : 2017.02.28
  • 발행 : 2017.03.31

초록

생물활성탄 공정과 안트라사이트를 여재로 사용한 biofilter에서 공탑 체류시간(EBCT)과 수온의 변화에 따른 8종의 고지혈증 치료제류(blood lipid regulator agents, BLLAs)의 생물분해 특성을 평가하였다. 수온 $8^{\circ}C$, $16^{\circ}C$$24^{\circ}C$에서 공탑 체류시간을 5분~15분까지 변화시켰다. 생물활성탄 공정에서 고지혈증 치료제류 8종의 생물분해 제거율은 공탑 체류시간과 수온의 변화에 많은 영향을 받았으며, 공탑 체류시간과 수온이 증가할수록 생분해 제거율이 증가하였다. 고지혈증 치료제류의 종류에 따른 생물활성탄 공정에서 생분해 제거율은 statin계의 경우 simvastatin이 가장 높았으며 다음으로 mevastatin, fluvastatin 및 atorvastatin 순이었다. 또한, Fibrate계 고지혈증 치료제들의 생물분해능은 fenofibrate가 가장 높았으며 다음으로 gemfibrozil, bezafibrate, clofibric acid순이었다. BAC 공정에서 생물분해 제거능이 가장 낮은 clofibric acid와 atorvastatin의 생물분해 속도상수($k_{bio}$)는 수온이 $8^{\circ}C$에서 $24^{\circ}C$로 상승하였을 경우, 각각 $0.0075min^{-1}$$0.0122min^{-1}$에서 $0.0540min^{-1}$$0.0866min^{-1}$으로 증가하여 각각 7.2배 및 7.1배 정도 증가하였다.

In this study, We investigated the effects of water temperature and empty bed contact time (EBCT) on the biodegradability of 8 blood lipid lower agents (BLLAs) in biological activated carbon (BAC) process. Experiments were conducted at three water temperatures ($8^{\circ}C$, $16^{\circ}C$ and $24^{\circ}C$) and three EBCTs (5 min, 10 min and 15 min). Increasing water temperature and EBCT increased the biodegradation efficiency of BLLAs in BAC process. Simvastatin and fenofibrate were the highest biodegradation efficiency, but atorvastatin and clofibric acid were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 8 BLLAs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants ($k_{bio}$) of clofibric acid and atorvastatin were $0.0075min^{-1}$ and $0.0122min^{-1}$ at $8^{\circ}C$, and were $0.0540min^{-1}$ and $0.0866min^{-1}$ at $24^{\circ}C$, respectively. By increasing the water temperature from $8^{\circ}C$ to $24^{\circ}C$, the biodegradation rate constants ($k_{bio}$) were increased 7.1~7.2 times.

키워드

참고문헌

  1. Halling-Sorensen, B., Nielson, S. N., Lanzky, P. E. and Ingerslev, L. F., "Occurrence, fate and effects of pharmaceutical substances in the environments-a review," Chemosphere, 36(2), 357-393(1998). https://doi.org/10.1016/S0045-6535(97)00354-8
  2. Bendz, D., Paxéus, N. A., Ginn, T. R. and Loge, F. J., "Occurrence and fate of pharmaceutically active compounds in the environment, a study: Höje River in Sweden," J. Hazard. Mater., 122, 195-204(2005). https://doi.org/10.1016/j.jhazmat.2005.03.012
  3. Moldovan, Z., "Occurrence of pharmaceutical and personal care products as micropollutants in rivers from Romania," Chemosphere, 64, 1808-1817(2006). https://doi.org/10.1016/j.chemosphere.2006.02.003
  4. Fent, K., Weston, A. A. and Caminada, D., "Ecotoxicology of human pharmaceuticals," Aquat. Toxicol., 76, 122-159(2006). https://doi.org/10.1016/j.aquatox.2005.09.009
  5. Dorne, J. L. C., Ragas, A. M., Frampton, G. K., Spurgeon, D. S. and Lewis, D. F., "Trends in human risk assessment of pharmaceuticals," Anal. Bioanal. Chem., 387, 1167-1172(2007). https://doi.org/10.1007/s00216-006-0961-9
  6. Yamamoto, H., Nakamura, Y., Nakamura, Y., Kitani, C., Imari, T. and Sekizawa, J., "Initial ecological risk assessment of eight selected human pharmaceuticals in Japan," Environ. Sci., 14, 177-193(2007).
  7. Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E., "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes," Environ. Sci. Technol., 39, 6649-6663(2005). https://doi.org/10.1021/es0484799
  8. Mompelat, S., Le Bot, B. and Thomas, O., "Occurrence and fate of pharmaceutical products and by-products, from source to drinking water," Environ. Int., 35, 803-814(2009). https://doi.org/10.1016/j.envint.2008.10.008
  9. Pal, A., Gin, K. Y. H., Lin, A. Y. C. and Reinhard, M., "Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects," Sci. Total Environ., 408, 6062-6069(2010). https://doi.org/10.1016/j.scitotenv.2010.09.026
  10. Son, H. J., Yeom, H. S., Jung, J. M., Jang, S. H. and Kim, H. S., "Caffeine and carbamazepine: detection in Nakdong River basin and behavior under drinking water treatment processes," J. Environ. Sci. Intl., 21(7), 837-843(2012). https://doi.org/10.5322/JES.2012.21.7.837
  11. Hernando, M. D., Aguera, A. and Fernandez-Alba, A. R., "LC-MS analysis and environmental risk of lipid regulators," Anal. Bioanal. Chem., 387, 1269-1285(2007). https://doi.org/10.1007/s00216-006-0781-y
  12. Ternes, T. A., "Occurrence of drug in German sewage treatment plants and rivers," Water Res., 32(11), 3245-3260(1998). https://doi.org/10.1016/S0043-1354(98)00099-2
  13. Stumpf, M., Ternes, T. A., Wilken, R. D., Rodrigues, S. V. and Baumann, W., "Polar drug residues in sewage natural waters in the state of Rio de Janeiro, Brazil," Sci. Total Environ., 225, 135-141(1999). https://doi.org/10.1016/S0048-9697(98)00339-8
  14. Farre, M., Ferrer, I., Ginebreda, A., Figueras, M., Olivella, L., Tirapu, L., Vilanova, M. and Barcelo, D., "Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: methods and preliminary results including toxicity studies with Vibrio fischeri, J. Chromatogr. A, 938, 187-197(2001). https://doi.org/10.1016/S0021-9673(01)01154-2
  15. Mimeault, C., Woodhouse, A. J., Miao, X. S., Metcalfe, C. D., Moon, T. W. and Trudeau, V. L., "The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, Carassius auratus," Aquat. Toxicol., 73, 44-54(2005). https://doi.org/10.1016/j.aquatox.2005.01.009
  16. Mendoza, A., Acena, J., Perez, S., Lopez de Alda, M., Barcelo, D., Gil, A. and Valcarcel, Y., "Pharmaceuticals and iodinated contrast media in a hospital wastewater: a case study to analyse their presence and characterise their environmental risk and hazard," Environ. Res., 140, 225-241(2015). https://doi.org/10.1016/j.envres.2015.04.003
  17. Valcarcel, Y., Gonzalez Alonso, S., Rodriguez-Gil, J. L., Romo Maroto, R., Gil, A. and Catala, M., "Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain," Chemosphere, 82, 1062-1071 (2011). https://doi.org/10.1016/j.chemosphere.2010.10.041
  18. Son, H. J., Seo, C. D., Yoom, H. S., Song, M. J. and Kim, K. A., "Detection characteristics of blood lipid lower agents (BLLAs) in Nakdong River basin," J. Environ. Sci. Intl., 22(12), 1615-1624(2013). https://doi.org/10.5322/JESI.2013.22.12.1615
  19. Krkosek, W. H., Koziar, S. A., White, R. L. and Gagnon, G. A., "Identification of reaction products from reactions of free chlorine with the lipid-regulator gemfibrozil," Water Res., 45, 1414-1422(2011). https://doi.org/10.1016/j.watres.2010.10.031
  20. Piecha, M., Sarakha, M. and Trebse, P., "Photocatalytic degradation of cholesterol-lowering statin drugs by TiO2-based catalyst. Kinetics, analytical studies and toxicity evaluation," J. Photochem. Photobiol. A Chem., 213, 61-69(2010). https://doi.org/10.1016/j.jphotochem.2010.04.020
  21. Razavi, B.., Song, W., Santoke, H. and Cooper, W. J., "Treatment of statin compounds by avanced oxidation processes: kinetic considerations and destruction mechanisms," Radiat. Phys. Chem., 80, 453-461(2011). https://doi.org/10.1016/j.radphyschem.2010.10.004
  22. Grenni, P., Patrolecco, L., Ademollo, N., Tolomei, A. and Caracciolo, A. B., "Degradation of gemfibrozil and naproxen in a river water ecosystem," Microchem. J., 107, 158-164(2013). https://doi.org/10.1016/j.microc.2012.06.008
  23. Salgado, R., Oehmen, A., Carvalho, G., Noronha, J. P. and Reis, M. A. M., "Biodegradation of clofibric acid and identification of its metabolites," J. Hazard. Mater., 241-242, 182-189(2012). https://doi.org/10.1016/j.jhazmat.2012.09.029
  24. Son, H. J., Yoo, S. J., Roh, J. S. and Yoo, P. J., "Biological activated carbon (BAC) in water treatment," J. Korean Soc. Environ. Eng., 31(4), 308-323(2009).
  25. Guo, X., Li, F., Helard, D. and Kawaguchi, T., "Biodegradation of natural estrogens by biofilms from biological activated carbon: effect of temperature," J. Water Res. Prot., 4, 913-921(2012). https://doi.org/10.4236/jwarp.2012.411107
  26. Li, Z., Dvorak, B. and Li, X., "Removing $17{\beta}$-estradiol from drinking water in a biologically activated carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor," Water Res., 46, 2828-2836(2012). https://doi.org/10.1016/j.watres.2012.03.033
  27. Seo, C. D., Son, H. J., Jung, J. M., Choi, J. T., Ryu, D. C. and Jang, S. H., "Biodegradation of UV filters in biological activated carbon (BAC) process : biodegradation kinetic," J. Korean Soc. Environ. Eng., 36(11), 739-746(2014). https://doi.org/10.4491/KSEE.2014.36.11.739
  28. Martín, J., Buchberger, W., Alonso, E., Himmelsbach, M. and Aparicio, I., "Comparison of different extraction methods for the determination of statin drugs in wastewater and river water by HPLC/Q-TOF-MS," Talanta, 85, 607-615(2011). https://doi.org/10.1016/j.talanta.2011.04.017
  29. Aznar, R., Sánchez-Brunete, C., Albero, B., Rodríguez, J. A. and Tadeo, J. L., "Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields," Environ. Sci. Pollut. Res., 21, 4772-4782(2014). https://doi.org/10.1007/s11356-013-2438-7
  30. Goel, S., Hozalski, R. M. and Bouwer, E. J., "Biodegradation of NOM: effect of NOM source and ozone dose," J. Am. Water Works Assoc., 87(1), 90-105(1995).
  31. Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Korean Soc. Environ. Eng., 31(11), 989-996(2009).
  32. Seo, C. D., Son, H. J., Jung, J. M., Choi, J. T. and Jang, S. H., "Analysis of UV filters in water using stir bar sorptive extraction (SBSE) and GC/MS-MS," J. Environ. Sci. Intl., 23(6), 1037-1047(2014). https://doi.org/10.5322/JESI.2014.23.6.1037
  33. Sulaiman, S., Khamis, M., Nir, S., Lelario, F., Scrano, L., Bufo, S. A., Mecca, G. and Karaman, R., "Stability and removal of atorvastatin, rosuvastatin and simvastatin from wastewater," Environ. Technol., 36, 3232-3242(2015). https://doi.org/10.1080/09593330.2015.1058422
  34. Onesios, K. M., Yu, J. T. and Bouwer, E. J., "Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review," Biodegradation, 20, 441-466(2009). https://doi.org/10.1007/s10532-008-9237-8
  35. Radjenovic, J., Petrovic, M. and Barcelo, D., "Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment," Water Res., 43, 831-841(2009). https://doi.org/10.1016/j.watres.2008.11.043
  36. Gros, M., Petrovic, M., Ginebreda, A. and Barcelo, D., "Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes," Environ. Int., 36, 15-26(2010). https://doi.org/10.1016/j.envint.2009.09.002
  37. Schroder, H. Fr., "Mass spectrometric monitoring of the degradation and elimination efficiency for hardly eliminable and hardly biodegradable polar compounds by membrane bioreactors," Water Sci. Technol., 46(3), 57-64(2002).
  38. Rosal, R., Gonzalo, M. S., Boltes, K., Leton, P., Vaquero, J. J. and Garcia-Calvo, E., "Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid," J. Hazard. Mater., 172, 1061-1068(2009). https://doi.org/10.1016/j.jhazmat.2009.07.110
  39. Quero-Pastor, M., Valenzuela, A., Quiroga, J. M. and Acevedo, A., "Degradation of drugs in water with advanced oxidation processes and ozone," J. Environ. Manage., 137, 197-203(2014). https://doi.org/10.1016/j.jenvman.2014.02.011