Kim, Young-Am;Lee, Yong-Hee;Lee, Dong-Sun;Suh, Myung-Gyo
Journal of Environmental Health Sciences
/
v.32
no.5
s.92
/
pp.499-505
/
2006
Bioventing efficiency was compared in a continuous and an intermittent(6hr injection and 6hr rest) air injection mode. Two lab-scale columns which packed with 5 kg of soil artificially contaminated by diesel oil were operated. The columns were maintained at the $25^{\circ}C{\pm}2.5$ in order to minimize the effect of exterior temperature variation. The flow rate of air injection mode were maintained constantly at the flow rate of 10 ml/min. The moisture of the columns was stably maintained at $60{\sim}80%$ of field capacity. The nutrient compounds were added to make C:N:P ratio as 100:10:l. The continuous and intermittent injection modes showed 67.56% and 69.63% reduction of initial TPH concentration during 90 days, respectively. Two venting modes showed similar results in the analysis of the trends of the hydrocarbon utilizing bacterial counts for operating periods. The carbon dioxide production rate of the continuous injection mode was higher than that of intermittent injection mode. The loss of diesel oil by volatilization in the continuous and intermittent injection modes were about 5% and 1%, respectively. The lower volatilization loss in the intermittent injection mode suggested that the biodegradation of TPH in the intermittent injection mode was greater than that of the continuous mode. These results suggested that the intermittent injection mode is more efficient than the continuous venting mode.
Journal of Korean Society of Environmental Engineers
/
v.28
no.5
/
pp.573-576
/
2006
The efficacy of integrated ozone oxidation-biodegradation treatment was examined in the treatment of petrochemical wastewater with a special focus on the overall treatment time. When raw wastewater with chemical oxygen demand(COD) of 70-80 mg/L was oxidized by ozone, approximately 20% of initial COD was removed in less than 1.5 min at a dosing rate of 400 mg $O_3/L{\cdot}h $. No further decrease in COD was observed for the extended ozone treatment up to 30 min. Biological treatment alone showed a rapid reduction of COD to 40-50 mg/L, subsequently resulting in the decreased rate of COD removal. Pre-treatment by ozone before biological treatment did not significantly affect the specific rate of COD removal in a biological treatment. When ozone oxidation followed biological treatment, the extent of COD removal by ozone oxidation was greater compared to that of biologically-treated wastewater for a shorter time. Taken together, it was decided that the biological treatment time could be reduced if the treatment processes of concern will be properly arranged.
Kim Yong-Sik;Son Young-Gyu;Khim Jee-Hyeong;Song Ji-Hyeon
Journal of Soil and Groundwater Environment
/
v.10
no.4
/
pp.26-32
/
2005
Surfactants can be used to enhance the mass transfer rate of hydrophobic compounds into the biologically active liquid phase, resulting in an increase in biodegradation rate of toluene. In this study, the mass transfer rate and the biocompatibility of toluene in the presence of various surfactants were evaluated. Four anionic and non ionic surfactants were tested: sodium dodecyl sulfate (SOS), TritonX-100, Tween 80, and BYK-345 (silicone surfactant). Experimental results showed that BYK-345 at the critical micelle concentration (CMC) enhanced the solubility of toluene. However, there was no increase in the solubility of toluene by SOS and TritonX-100 at their CMCs. With the addition of each surfactant into deionized water the mass transfer rate became faster than that of the case with no surfactant. A bottle study using toluene-degrading microorganisms showed that SOS seriously reduced toluene removal presumably due to the toxicity of the anionic surfactant and/or the substrate competition between the surfactant and toluene. In addition, the degradation rate of toluene was decreased in the presence of BYK-345, indicating that BYK-345 adversely affects the activity of microorganisms. However, TritonX-100 and Tween 80 did not decrease the degradation rate of toluene significantly. Rather, at the low concentration of TritonX-100 toluene degradation rate was even increased. Overall the experimental results suggest that TritonX-100 be the appropriate surfactant for enhanced biological degradation of toluene.
Geotrichum sp. MF01, isolated from oil-contaminated soil, utilized methyl ethyl ketone(MEK) as the sole source of carbon and energy. The strain MF01 showed a Michaelis-Menten kinetics on MEK, and the kinetic parameters determined for MEK degradation were; specific removal rate, $r_{max}$ = 0.14 $h^{-1}$; half-saturation constant, $K_m$ = 5.88 mM. The adsorption of MEK by heat-killed strain was 0.62 mg at 8.07 mg MEK indicating that the degradation was the primary removal mechanism over adsorption. Biodegradation of MEK was studied in a biofilter using perlite, vermiculite 0:1, v/v) as supporting material. During 57 days of biofilter operation, $^3h^{-1}$.
Park, Yeong-Soon;Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
Journal of Environmental Science International
/
v.3
no.3
/
pp.197-207
/
1994
Microorganisms capable of utilizing 2,4,5-trichlorophenoxyacetic acid(2,4,5-T) as sole carbon source were isolated from soil by enrichment culture. Among these strains, EL-O7IP had the highest biodegradability of 2,4,5-7, and according to its morphological and physiological characteristics, it was identified as Pseudomonas sp. This strain was resistant to rifampicin, streptomycin, ampicillin, kanamycin and such metal ions as $Zn^{2+}$, $Cu^{2+}$ Various compounds of chlorinated phenol and substrate analogs were more easily utilized than 2,4,5-7, but biodegradation rate for each compound was different. The strain easily utilized the compounds of chlorinated substituents on phenol in the order of ortho-, para-, and meta- position. The biodegradability of this strain was very stable. Key words : 2,4,5- trichlorophenoxyacetic acid, Pseudomonas sp .
The objectives of this study were to examine the biodegradation of phenol using the anaerobic fluidized bed reactor(AFBR). Mixed microorganisms were selected from the anaerobic digestion tank, and could be adapted to high concentration of phenol by increasing the phenol concentration 600-3600 mg/l step by step. The results were summarized as follows: 1. The average removal efficiency of phenol was 90%, decreased by increasing concentration of phenol, and then a shock range was 1200~2400 ppm. 2. The production rate of biogas in overall limits was proportional to the concentration of influent phenol. 3. At steady state, compositions of gases were $CH_4$ 55~60%, $C0_2$ 34~43%, respectively. These were similar to that of the theoretical estimates. 4. The production rates of biogas and methane per the molarity of phenol removed were linearly increased, 56.45 l gas/mol-phenol and 29.20 l $CH_4/mol$-phenol. Using this biogas, the recoverable energy was 269.1 kcal/mol phenol. It was 120.2 kcal/g-COD, transforming into the chemical oxygen demand. 5. The bulk of microorganisms existed in suspended section of fluidized bed with type of biofilm and its concentration was 340 mg/g-media. In conclusion, the anaerobic treatment of pure phenol was possible and its removal efficiency, introducing the AFBR, was successful. Also toxic organic compound such as phenol was biodegradable and was recoverable as resource of energy.
To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.
Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.
To isolate a nonylphenol (NP)-degrading bacterium, we isolated a single colony from the NP-degrading microbial consortium SW-3, which was previously isolated from an aqueous environment. Ten colonies that exhibited different cell morphologies were isolated and the strains were named SW-3-A, -B, -C, -D, -E, -F1, -F2, -G, -H, and -I. The ability of isolates to degrade NP was evaluated by kinetic analysis by the constant of NP degradation rate ($k_1$) and the half-life time of NP degradation ($t_{1/2}$). SW-3-F1, -F2, -G, and -I strains were superior at degrading NP. The $k_1$ and $t_{1/2}$ values of the four strains were sixfold higher and one-sixth lower, respectively, than those of the consortium strain. Additionally, SW-3-F1, -G, and -I strains were tested for their ability to degrade NP during coculture. NP degradation by coculture with a combination of all three strains was inferior to that of culture conducted with single isolates, suggesting that the three strains are antagonistic toward each other during NP degradation.
Kim, Seong-Bin;Kim, Chi-Kyung;Kim, Hee-Sik;Lee, Chang-Ho;Shin, Ki-Sun;Kwon, Gi-Seok;Yoon, Byung-Dae;Oh, Hee-Mock
Microbiology and Biotechnology Letters
/
v.24
no.6
/
pp.743-748
/
1996
For the biological treatment of phenolic resin wastewater containing phenol and formaldehyde, a phenol-degrading yeast was isolated from the papermill sludge, and then identified as Candida tropicalis PW-51 according to morphological, physiological and biochemical properties. The strain was able to degrade high phenol concentrations up to 2,000mg/l within 58 hours in batch cultures. Phenol-degrading efficiency by the strain was maximum at the culture conditions of a final concentration of 9 $\times$ 10$^{6}$ cells/ml, 30$\circ$C and pH 7.0. The mean degradation rate of phenol was highest at 45.5mg/l/h in 1,000mg/l phenol from 500mg/l to 2,000mg/l phenol. Because the enzyme activity of catechol 1,2-dioxygenase increased in the course of degradation of phenol, it seems that this strain degrades phenol via the ortho-cleavage of benzene ring. The isolate C. tropicalis PW-51 could be effectively used for the biological treatment of phenolic resin wastewater.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.