• 제목/요약/키워드: Biodegradation rate

검색결과 319건 처리시간 0.029초

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

물 중에서 일부 농약의 생분해성에 환한 연구 (A Study on the Biodegradability of Some Pesticides in Water)

  • 민경진;차춘근
    • 한국식품위생안전성학회지
    • /
    • 제16권2호
    • /
    • pp.125-132
    • /
    • 2001
  • Modified river die-away 법으로 1999년 5월 20일부터 7월 29일 까지 낙동강 (A)과 금호강(B)에서 채수한 강물로 phosphamidon과 profenofos의 생분해 시험을 한 곁과는 다음과 같다. Phosphamidon의 경우 배양 7일 경과 후 최초처리량 대비 잔류량은 대조군에서 74.9%, A 실험군에서는 68.8%, B 실험군에서는 62.7%가 잔류하였으며, profenofos의 경우 배양 7일 경과 후 대조군에서 25.1%, A 실험군에서는 21.9%. B 실헌군에서는 11.9%가 잔류하였다. Phosphamidon과 profenofos의 생분해는 배양시간이 경과할수록 수질오염이 높을수록 생분해율이 높았다. 채취한 하천수에서 phosphamidon과 profenofos의 분해균주는 모두 그람 음성균으로 Klebsiella pneumoniae, Aeyomonas hydrophila 및 Acinetobacter calcoaceticus의 3종임이 확인되었다. 생분해에 의한 분해산물을 확인하고자 GC/MS분석을 한 결과 phosphamidon의 분해생성물은 m/z=153의 O, O-dimethyl phosphate(DMP)와 m/z=149의 N, N-diethylchloro acetamide로 추정된다. Profenofos의 분해생성물은 m/z=208로 4-bromo 2-chloro phenol과 m/z=240으로 O-ethyl S-propyl phosphate로 추정된다.

  • PDF

Novosphingobium pentaromtivorans US6-1에 의한 고분자 방향족 탄화수소 생분해과정에서 2-hydroxypropyl-$\beta$-cyclodextrin의 영향 (Effect of 2-hydroxypropyl-$\beta$-cyclodextrin on Biodegradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromtivorans US6-1)

  • 강지현;권개경;김상진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권3호
    • /
    • pp.146-151
    • /
    • 2004
  • 포접력을 지닌 2-hydroxypropyl-β-cyclodextrin(β-HPCD)을 비롯한 cyclodextrin계 화합물은 소수성 유기물질의 용해도를 증가시킴으로써 미생물에 의한 분해를 촉진시키나 그 외의 자세한 기작은 알려져 있지 않다. 본 실험에서는 β-HPCD 유무에 따라 고분자 PAHs 분해력을 지닌 Novosphingobium pentaromtivorans US6-1 균주의 pyrene라 benzo[a]pyrene(B[a]P)의 분해정도, 이때의 biomass 변화 및 dioxygenase활성을 측정함으로써 PAHs 생분해과정에서 β-HPCD의 역할을 규명하고자 하였다. 실험구는 균주와 PAHs, β-HPCD의 존재 유무에 따라 8개 조건으로 준비하였으며 각 실험구의 배양기간에 따른 PAHs 분해도와 생체량의 변화를 측정하였다. Pyrene의 경우 β-HPCD가 존재함에 따라 분해도가 증진되는 것이 확인되었으며, 특히 B[a]P의 분해에는 β-HPCD가 필수요소로 작용하였다. 생체량의 변화는 PAHs의 존재 유무에 영향을 받지 않았고 β-HPCD의 존재 유무에 따라 차이를 나타내었다. 또한 US6-1 균주는 β-HPCD가 포함된 MM2 무기영양배지에서 전배양 할 때에 ZoBell 배지에서 전배양하는 경우에 비해 catechol-1,2-dioxygenase 효소활성이 높은 것으로 나타났으나 그 값은 빈영양상태에서 배양한 세포의 효소환성과 큰 차이를 보이지는 않았다. 이상의 결과로 볼 때 β-HPCD는 PAHs의 이용성을 높여주는 동시에 탄소원으로 이용되어 균주의 생체량 증가에 기여함으로써 PAMs의 분해력을 증진시키지만 dioxygenase 효소활성에는 영향을 미치지 않는 것으로 사료된다.

  • PDF

흡착특성이 다른 내분비계 장애물질 3종, Amitrol, Nonylphenol, Bisphenol-A의 GACs에서의 흡착 특성 (Adsorption characteristics of Amitrol, Nonylphenol, Bisphenol-A with GACs)

  • 최근주;김상구;권기원;지용대;김승현;김창원
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.256-264
    • /
    • 2004
  • Adsorption characteristics of three endocrine disruptors, amitrol, nonylphenol, and bisphenol-A, were evaluated depending on the type and service duration of activated carbon (AC). Bituminous coal-, wood-, and coconut-based coals were tested. Bituminous coal-based AC (BCAC) had the greatest sorption capacity for the three chemicals tested, followed by wood-based AC (WAC) for nonylphenol and coconut palm-based AC (CAC) for bisphenol-A. During the column test, amitrol removal efficiency increased over time, indicating that hydrophilic endocrine disruptors are biodegraded in the AC column. Removal efficiencies of hydrophobic compounds such as nonylphenol and bisphenol-A decreased over time since the main removal mechanism was adsorption. The order of the amitrol removal was: BCAC-5.9 yr, CAC-3.l yr > BCAC-2.2 yr > BCAC-virgin > CAC-virgin > WAC-virgin > WAC-3.l yr. In general, used AC had greater removals than virgin AC. The order of the bisphenol-A removal was: CAC-virgin > BCAC-2.2 yr > CAC-3.l yr > WAC-virgin > BCAC-5.9 yr > WAC-3.l yr. The order of the nonylphenol removal was: BCAC-virgin > WAC-virgin > CAC-3.1 yr, WAC-3.1yr> BCAC-2.2 yr > BCAC-5.9 yr > CAC-3.1 yr. Bituminous coal AC performed the best over time. Endocrine disruptors such as these three compounds appear to be removed effectively by activated carbon through biodegradation and adsorption. Wood and coal based among the virgin ACs and 3.1 years used wood base among the used ACs appeared the lowest carbon usage rate(CUR) for nonylphenol removal by prediction model. Virgin and used coconut base ACs except BCAC had the lowest CUR for removal Bisphenol-A. Biodegradation of nonylphenol and Bisphenol-A did not occurred during the 9,800 bed volume experiment period. BCAC had the highest biodegradation capacity of 46% for amitrol among virgin ACs and the used coal based ACs had 33-44% higher biodegradation capacity than virgin's for amitrol so biodegradation is the effective removal technology for hydrophilic material such as amitrol.

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

Biodegradation of Ethylene in an Activated Carbon Biofilter

  • Kim, Jong-O;Chung, Il-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.79-84
    • /
    • 2002
  • The objective of this study was to investigate the biodegradation of ethylene in an activated carbon biofilter inoculated with immobilized microbial consortium. The biofilter performance was monitored in terms of ethylene removal efficiency and carbon dioxide production. The biofilter was capable of achieving ethylene removal efficiency as much as 100% at a residence time of 14 min and an inlet concentration of 290 ppm. Under the same conditions, carbon dioxide with a concentration of up to 546 ppm was produced. Its was found that carbon dioxide was produced at a rate of 87 mg day$\^$-1/, which corresponded to a volume of 0.05 L day$\^$-1/. During operation with an inlet ethylene of 290 ppm, the maximum elimination capacity of the biofilter was 34 g of C$_2$H$_4$m$\^$-3/ day$\^$-1/. The biofilter could provide an attractive treatment technology for removing ethylene, an extremely volatile and slowly adsorbed compound.

Dichlorophenol의 혐기성 분해에 관한 연구 (A study on Anaerobic Biodegradation of Dichlorophenol)

  • 박주석;전연호
    • 상하수도학회지
    • /
    • 제9권2호
    • /
    • pp.127-135
    • /
    • 1995
  • The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.

  • PDF

지하수 모니터링을 통한 오염물질(TEX)의 자연저감능 평가

  • 이민효;윤정기;김혁;김문수;이길철;이석영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.179-182
    • /
    • 2002
  • The objective of this study was to evaluate petroleum hydrocarbon degradation processes governing natural attenuation at tile contaminated site and accomplished through conducting on investigation of degradation rate, capacity, and mechanism of the monitored natural attenuation. The monitoring results of the three years indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than these in the none-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential and a neutral pH in the contaminated groundwater, suggesting that biodegradation of TEX is the major on-going process in the contaminated area. However, reduction of TEX in the groundwater was not only biodegradation but also dilution and reaeration during infiltration of uncotaminated surface and groudwater.

  • PDF

Gram 음성세균에 의한 Aroclor 분해에 미치는 환경요소의 영향 (Effects of Environmental Factors on Degradation of Aroclors by Gram-negative Bacteria)

  • 김치경;김문식
    • 미생물학회지
    • /
    • 제28권2호
    • /
    • pp.145-150
    • /
    • 1990
  • The effects of environmental factors on degradation of Aroclor 1242 were investigated with four Gram-negative bacterial isolates. Their biodegradabilities of the Aroclor were well correlated to their growth rates on the Aroclor added as a sole carbon and energy source. The optimum concentration of the Aroclor for biodegradation of the substrate in MM2 medium was 0.5mg/ml in HK-100, HK-123, and MS-1003 strains, but 1 mg/ml in DJ-26 strain. The optimum temperature and pH were $30^{\circ}C$ and 7.0, respectively, for all the strains. On the basis of the results which the strain of DJ-26 showed the highest degradability of the Aroclor as well as the highest growth rate under the optimum environmental conditions, the bacterial isolate identified as Pseudomonas sp. was found to be a strain usable for treatment of the toxic and recalcitrant chemical pollutants, such as polychlorinated aromatic hydrocarbons.

  • PDF

Micrococcus sp. MS-64K에 의한 Trichloroethylene의 분해특성 및 Kinetics (Biodegradation and Kinetics of Trichloroethylene by Micrococcus sp. MS-64K)

  • 김종수;박근태
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.481-488
    • /
    • 1997
  • Microorganisms capable of degrading trlchloroethylene(TCEI using phenol as a induction substrate were isolated from industrial effluents and soil. The strain MS-64K which had the highest blodegradablllty was identified as the genus Micrococcus. The optimal conditions of medium for the growth and blodegadatlon of trlchloroethylene were observed as follows; the initial pH 7.0, trlchloroethylene 1, 000ppm as the carbon source, 0.2% ${(NH_4)}_2SO_4$, as the nitrogen source. respectively. Lag period and degradation time on optimal medium were shorter than those on Isolation medium. Growth on the optimal medium was Increased. Addition of 0.1% Triton X-100 Increased the growth rate of Micrococcus sp. MS-64K, but degradation was equal to optimal medium. Trlchloroethylene degradation by Micrococcus sp. MS-64K was shown to fit logarithmic model when the compound was added at initial concentration of 1, 000ppm.

  • PDF