• 제목/요약/키워드: Biocontrol effect

검색결과 130건 처리시간 0.031초

Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.87.2-87
    • /
    • 2003
  • Long-term repeated culturing of biocontrol agents on a certain medium often results in reduced biocontrol efficacy and altered physiology. Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543 was investigated. Over 20 times repeated cultivation of B. giadioli strain B543 on Kings B medium or nutrient agar medium showed improved biological control of cucumber damping-off caused by Pythium ultimum, while one time cultivation on KB or NA did not. The repeated cultivation also induced the physiological changes of the biocontrol agent such as antifungal activity and the production of protease and siderophore. Our result indicates that adaptation to proper culturing medium can alter biocontrol ability and must consider in optimizing the use of biocontrol agents.

  • PDF

Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • 제46권3호
    • /
    • pp.287-295
    • /
    • 2018
  • In this study, we evaluated the effect of different temperatures (10, 20, 30, and $40^{\circ}C$) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.

Direct Evaluation of the Effect of Gene Dosage on Secretion of Protein from Yeast Pichia pastoris by Expressing EGFP

  • Liu, Hailong;Qin, Yufeng;Huang, Yuankai;Chen, Yaosheng;Cong, Peiqing;He, Zuyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.144-151
    • /
    • 2014
  • Increasing the gene copy number has been commonly used to enhance the protein expression level in the yeast Pichia pastoris. However, this method has been shown to be effective up to a certain gene copy number, and a further increase of gene dosage can result in a decrease of expression level. Evidences indicate the gene dosage effect is product-dependent, which needs to be determined when expressing a new protein. Here, we describe a direct detection of the gene dosage effect on protein secretion through expressing the enhanced green fluorescent protein (EGFP) gene under the direction of the ${\alpha}$-factor preprosequence in a panel of yeast clones carrying increasing copies of the EGFP gene (from one to six copies). Directly examined under fluorescence microscopy, we found relatively lower levels of EGFP were secreted into the culture medium at one copy and two copies, substantial improvement of secretion appeared at three copies, plateau happened at four and five copies, and an apparent decrease of secretion happened at six copies. The secretion of EGFP being limiting at four and five copies was due to abundant intracellular accumulation of proteins, observed from the fluorescence image of yeast and confirmed by western blotting, which significantly activated the unfolded protein response indicated by the up-regulation of the BiP (the KAR2 gene product) and the protein disulfide isomerase. This study implies that tagging a reporter like GFP to a specific protein would facilitate a direct and rapid determination of the optimal gene copy number for high-yield expression.

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • 식물병연구
    • /
    • 제21권4호
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.

Antifungal Activity of Thymol against Aspergillus awamori and Botrytis aclada Isolated from Stored Onion Bulbs

  • Ji Yeon Oh;Siti Sajidah;Elena Volynchikova;Yu Jin Kim;Gyung Deok Han;Mee Kyung Sang;Ki Deok Kim
    • Mycobiology
    • /
    • 제50권6호
    • /
    • pp.475-486
    • /
    • 2022
  • The antifungal activity of thymol against Aspergillus awamori F23 and Botrytis aclada F15 in onions was examined through direct treatment with amended media and gaseous treatment with I-plates (plastic plates containing central partitions). The protective and curative control efficacy of thymol was examined 24 h before and after the inoculation of onion bulbs with the fungal isolates. Mycelial growth, sporulation, and spore germination of the isolates were inhibited on potato dextrose agar amended with various concentrations of thymol or acetic acid (positive control). Overall, thymol produced a stronger inhibitory effect on the mycelial growth and development of the isolates than acetic acid. Following gaseous treatment in I-plates, mycelial growth, sporulation, and spore germination of the isolates were inhibited at higher concentrations of thymol or acetic acid; however, acetic acid showed a little effect on the sporulation and spore germination of the isolates. Following the treatment of onion bulbs with 1000 mg L-1 of thymol 24 h before and after fungal inoculation, lesion diameter was greatly reduced compared with that following treatment with 0.5% ethanol (solvent control). Onion bulbs sprayed with thymol 24 h before fungal inoculation generally showed reduced lesion diameters by isolate F23 but not in isolate F15 compared with those sprayed 24 h after fungal inoculation. Collectively, thymol effectively inhibited the growth and development of A. awamori and B. aclada on amended media and in I-plates. In addition, spraying or fumigation of thymol is more desirable for effectively controlling these postharvest fungal pathogens during long-term storage conditions.

The Effect of Environmental Factors on Phage Stability and Infectivity on Their Host Bacteria: a Case Study for an Escherichia coli Phage (T7), a Listeria Phage (A511), and a Salmonella Phage (Felix O1)

  • Kim, Kwang-Pyo
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.398-403
    • /
    • 2007
  • The effectiveness of phage biocontrol depends on the activity of bacteriophage in a given environment. In order to investigate the infectivity and the stability of bacteriophages in representative environments, three virulent phages, Listeria phage A511, Salmonella phage Felix O1, and Escherichia coli phage T7, were subjected to different temperatures, pHs and salt concentrations (NaCl). Phage infectivity was also determined in the presence of divalent cations ($Mg^{2+}$ or $Ca^{2+}$). As a result, three phages exhibited a wide range of survival rates under various environments. Phage infectivity was directly correlated with bacterial growth under the applied conditions. One exception was Felix O1 that did not kill Salmonella grown in low pH (4.5). The failure was attributed to defective adsorption of Felix O1. This finding is significant as it provides an explanation for the inefficient phage biocontrol. Therefore, such information is crucial to improve phage biocontrol of pathogens.

Isolation and Characterization of a Lytic and Highly Specific Phage against Yersinia enterocolitica as a Novel Biocontrol Agent

  • Gwak, Kyoung Min;Choi, In Young;Lee, Jinyoung;Oh, Jun-Hyun;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1946-1954
    • /
    • 2018
  • The aim of this study was to isolate and characterize a lytic Yersinia enterocolitica-specific phage (KFS-YE) as a biocontrol agent. KFS-YE was isolated and purified with the final concentration of ($11.72{\pm}0.03$) log PFU/ml from poultry. As observed by transmission electron microscopy, KFS-YE consisted of an icosahedral head and a contractile tail, and was classified in the Myoviridae family. KFS-YE showed excellent narrow specificity against Y. enterocolitica only. Its lytic activity was stable at wide ranges of pH (4-11) and temperature ($4-50^{\circ}C$). The latent period and burst size of KFS-YE were determined to be 45 min and 38 PFU/cell, respectively. KFS-YE showed relatively robust storage stability at -20, 4, and $22^{\circ}C$ for 40 weeks. KFS-YE demonstrated a bactericidal effect in vitro against Y. enterocolitica and provided excellent efficiency with a multiplicity of infection as low as 0.01. This study demonstrated the excellent specificity, stability, and efficacy of KFS-YE as a novel biocontrol agent. KFS-YE may be employed as a practical and promising biocontrol agent against Y. enterocolitica in food.

Dual Biocontrol Potential of the Entomopathogenic Fungus, Isaria javanica, for Both Aphids and Plant Fungal Pathogens

  • Kang, Beom Ryong;Han, Ji Hee;Kim, Jeong Jun;Kim, Young Cheol
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.440-447
    • /
    • 2018
  • Dual biocontrol of both insects and plant pathogens has been reported for certain fungal entomopathogens, including Beauveria bassiana and Lecanicillum spp. In this study, we demonstrate, for the first time, the dual biocontrol potential of two fungal isolates identified by morphological and phylogenetic analyses as Isaria javanica. Both these isolates caused mortality in the greater wax moth, and hence can be considered entomopathogens. Spores of the isolates were also pathogenic to nymphs of the green peach aphid (Myzus persicae), with an $LC_{50}$ value of $10^7spores/mL$ 4 days after inoculation and an $LT_{50}$ of 4.2 days with a dose of $10^8spores/mL$. In vitro antifungal assays also demonstrated a strong inhibitory effect on the growth of two fungi that are pathogenic to peppers, Colletotrichum gloeosporioides and Phytophthora capsici. These results indicate that I. javanica isolates could be used as novel biocontrol agents for the simultaneous control of aphids and fungal diseases, such as anthracnose and Phytophthora blight, in an integrated pest management framework for red pepper.

Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

  • Sang, Mee Kyung;Shrestha, Anupama;Kim, Du-Yeon;Park, Kyungseok;Pak, Chun Ho;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.154-167
    • /
    • 2013
  • We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.

Influence of Soil Microbial Biomass on Growth and Biocontrol Efficac of Trichoderma harzianum

  • Bae, Yeoung-Seuk;Guy R. Kundsen;Louise-Marie C. Dandurand
    • The Plant Pathology Journal
    • /
    • 제18권1호
    • /
    • pp.30-35
    • /
    • 2002
  • The hyphal growth and biocontrol efficacy of Trichodemo harzianum in soil may depend on its interactions with biotic components of the soil environment. The effect of soil microbial biomass on growth and biocontrol efficacy of T. hanianum isolate ThzIDl-M3 (green fluorescent protein transformant) was investigated using artificially prepared different levels of soil microbial biomass (153,328, or 517ug biomass carbon per g of dry soil; BC). The hyphal growth of T. harzanum was significantly inhibited in the soil with 328 or 517 $\mu$g BC compared with 153 ug BC. When ThzIDl-M3 was added to the soils as an alginate pellet formulation, the recoverable population of ThzIDl-M3 varied, but the highest population occurred in 517ug BC. Addition of alginate pellets of ThzIDl-M3 to the soils (10 per 50 g) resulted in increased indigenous microbial populations (total fungi, bacterial fluorescent Pseudomonas app., and actinomycetes). Furthermore, colonizing ability of ThzIDl-M3 on sclerotia of Sclerotinia sclerotiorum was significantly reduced in the soil with high revel of BC. These results suggest that increased soil microbial biomass contributes to increased interactions between introduced T. harzianum and soil microorganisms, consequently reducing the biocontrol efficacy of 1T. harzianum.