• Title/Summary/Keyword: Biocontrol effect

Search Result 130, Processing Time 0.025 seconds

An Antifungal Agent Produced by Bacillus thuringiensis BK4, an Antagonistic Bacterium against Fusarium Wilt Disease of Tomato (항진균성 항생물질을 생산하는 Bacillus thuringiensis BK4의 항생물질 정제와 토마토 시들음병의 효과적인 방제)

  • Lim, Jong-Hee;Jung, Hee-Kyoung;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • The optimum production condition for the antibiotic from Bacillus thuringiensis BK4 was determined, and the suppression rate of Fusarium-wilt by the butanol-extracted antibiotic was verified by employing tomatoes in vitro and in vivo pot tests. Cell growth and antifungal activity were the best when 0.5% xylose and 0.2% peptone No.3 were given as carbon and nitrogen sources, respectively, in the presence of 5mM $CaCl_2$. The partially purified antibiotic successfully prevented Fusarium oxysporum pathogen in pot experiments. When the pots were treated with both live cells and the partially purified antibiotic, an additive-effect was seen in the suppression of Fusarium-wilt, but synergistic effect was not detected. The antibiotic, denoted BK4, purified by Sephadex LH-20 column chromatography was eluted with a single peak at a retention time of 38 min. on prep-HPLC; Minimum inhibition concentration of the homogenous antibiotic was determined to be 50${\mu}$g/ml.

Biological Control of Stem Rot of Pepper caused by Sclerotium rolfsii using by Bacillus amyloliquefaciens KBC1009 (길항세균 Bacillus amyloliquefaciens KBC1009를 이용한 고추 흰비단병의 생물학적 방제)

  • Kang, Jae-Gon;Lee, Young-Ui;Park, Jeong-chan;Jeong, Yoon-Woo;Park, Chang-Seuk;Kang, Hoon-Serg
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • Sclerotium rolfsii is a well known broad host range soil borne plant pathogenic fungus and caused serious damage to various vegetable crops. To develop an effective biological control agent for S. rolfsii, an isolate which showed strong inhibitory effect on the mycelial growth of S. rolfsii was selected among the antagonistic bacterial isolates collected from vinyl-house soil. The bacterial isolate was identified as Bacillus amyloliquefaciens KBC1009 based on the morphological, physiological characteristics and by 16S rRNA sequence analysis. The growth conditions for B. amyloliquefaciens KBC1009 were optimized in LB media(pH7) by culturing at 30℃ for 72 hrs. Glucose and yeast extract were confirmed as the best carbon and nitrogen sources, respectively. In order to test the inhibitory effect of B. amyloliquefaciens KBC1009 to stem rot of pepper, green house experiment was conducted. Drench of 1/500 diluted bacterial suspension of B. amyloliquefaciens KBC1009(5×108 cfu/ml) to each pepper plant 3 times with 10 days interval showed 66.7% control effectiveness. These results suggest that B. amyloliquefaciens KBC1009 is one of promising biocontrol agent to control stem rot caused by Sclerotium rolfsii.

Biocontrol Efficacy of Endophytic Bacteria Flavobacterium hercynim EPB-C313 for Control of Chinese Cabbage Clubroot (Flavobacterium hercynium EPB-C313 균주를 이용한 배추 뿌리혹병 생물적 방제)

  • Hahm, Soo-Sang;Kim, Jong-Tae;Han, Kwang-Seop;Kim, Byung-Ryun;Kim, Hong-Kyu;Nam, Yun-Kyu;Yu, Seung-Hun
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.210-216
    • /
    • 2012
  • Clubroot of Chinese cabbage by Plasmodiophora brassicae, was found to be high virulent to the Chinese cabbage, turnips and cabbage. It this study, the endophytic bacteria Flavobacterium hercynium EPB-C313, which was isolated from tissues of Chinese cabbage, was investigated the antimicrobial activity on the inactivation of resting spores and its control effect on clubroot disease by bioassay. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivate the resting spores of P. brassicae with 90.4, 36.8, and 26.0%, respectively. The clubroot was inhibited with 100% by dipping the seedlings of Chinese cabbage in culture solutions of F. hercynium EPB-C313 before planting, however the chemmical 'fluazinam' was 91.7% in pot tests. Complex treatment were highly enhanced control efficacy with 63.7% at field of 50% diseased plants by soil incorporation with the pellet contains organic matter and F. hercynium EPB-C313, seedling drench of culture solution of F. hercynium EPB-C313 and soil drench with 10 days after planting. These results imply that the F. hercynium EPB-C313 is a very useful biological control agent of clubroot disease of Chinese cabbage.

Biological Control of Perilla Sclerotinia Rot Caused by Sclerotinia sclerotiorum Using Bacillus megaterium N4. (Bacillus megaterium N4에 의한 들깨 균핵병 (Sclerotinia sclerotiorum)의 생물학적 방제)

  • 문병주;김현주;송주희;이광열;백정우;정순재
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.761-769
    • /
    • 2004
  • This study was investigated the occurrence of sclerotinia rot caused by Sclerotinia sclerotiorum at the major perilla cultivating area, Gangdong-dong, Gangseo-gu, Busan in 1998. The incidence of this disease ranged from 8.1 to 28.3% at Gangdong-dong area during the growing seasons. Symptoms of the disease initially appeared damping-off of infected stems and soft-rot on the leaves of perilla. Under the relatively high humidity, abundant white mycelia of the pathogen formed on the lesion developed into black sclerotia later and the infected leaves were finally fell down. Sixteen isolates, Sl-S16, isolated from diseased lesions showing typical symptoms, and pathogenicity was tested using mycerlial disks. Among them, S2 isolate showing the most strong pathogenicity was selected and identified as Sclerotinia sclerotiorum on the basis of morphological and cultural characteristics. For biological control, an antagonistic bacteria, N4 isolate which effectively inhibited not only mycelial growth of S2 isolate but also suppress sclerotinia rot on the pot assay, was selected and identified as Bacillus megaterium according to Bergey's manual and API system., Wettable powder type, N4 formulation using B. megaterium N4 isolate was developed and estimated its control effect on perilla crops in a plastic house. As a results, N4 formulation which applied before 3 days inoculation of pathogen was effectually controlled Sclerotinia rot as the control value of 98.0%, was more effective than chemical fungicide, benomyl showing the control value of 78.0%. This is the first report of wettable powder formulation as a biocontrol agent using B. megaterium N4 against Sclerotinia rot caused by S. sclerotiorum on perilla.

In Vitro Screening of Antibacterial Agents for Suppression of Fire Blight Disease in Korea (기내 검정법을 이용한 국내 과수 화상병 방제제 선발)

  • Lee, Min Su;Lee, Ingyeong;Kim, Sam Kyu;Oh, Chang-Sik;Park, Duck Hwan
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Since fire blight disease on apple and pear was produced in Korea in 2015, there were no registered chemicals to control against this disease. Instead, several antibacterial chemicals that were registered for other bacterial diseases such as soft rot and bacterial spot have been authorized by Rural Development Administration (RDA). However, these chemicals are not tested efficacy for fire blight disease except damage by those treatments on apple and pear in Korea. Thus, we evaluated efficiency using in vitro and in planta assays of antibacterial chemicals such as antibiotics and copper compounds including kasugamycin, oxytetracycline, oxolinic acid and streptomycin, and copper hydroxide, copper sulfate, oxine copper and tribasic copper sulfate, respectively. We also tested two kinds of biological agents. As expected, significant antibacterial effect was observed in vitro test of both antibiotics and copper-based chemicals. In planta test based on disease severity including ooze and water-soaked formation on immature pears, bacterial populations on blooms, and blight lesion formation in artificially inoculated shoots, kasugamycin, oxytetracycline and streptomycin have been shown the most efficiency among tested antibiotics. Four copper-based chemicals tested in this study, control effects are little bit lower than agricultural antibiotics but they seem to be available to use in terms of winter season. Biocontrol agents were also shown possibility to treat in eco-friendly farms. In addition, there are no antibiotic resistance genes in Korean isolates against antibiotics, which were selected for suppression of fire blight in this study.

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Development of Biofungicide Using Bacillus sp. KBC1004 for the Control of Anthracnose of Red Pepper (길항세균 Bacillus sp. KBC1004를 이용한 고추탄저병의 생물학적 방제제 개발)

  • Kang, Hoon-Serg;Kang, Jae-Gon;Park, Jeong-Chan;Lee, Young-Ui;Jeong, Yoon-Woo;Kim, Jeong-Jun;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2015
  • To develop an effective biopesticide to control pepper anthracnose disease, an isolate which showed strong inhibitory effect on the mycelial growth and conidial germination of Colletotrichum acutatum was selected among the antagonistic bacterial isolates collected from pepper grown soil. The bacterial isolate was identified as Bacillus sp. KBC1004 using 16S rRNA sequence analysis. The liquid culture of KBC1004 was freeze-dried and formulated as a wettable powder(WP). The wettable powder form of KBC1004 required at least 24 hours to activate and to inhibit the conidial germination of C. acutatum. In vitro bioassay using the detached green pepper fruits, biocontrol activity of the WP was not recognizable in simultaneous inoculation, but significant disease suppression was observed pre-treatment (24 hr) of the WP before pathogen inoculation. In field experiment, 4 times foliar applications of the 1/500 diluted wettable powder from the end of June showed great control efficacy similar to that of the chemical fungicide application. These results suggest that the formulated WP product could be an alternative mean to control of pepper anthracnose disease in environmentally friendly farming practices.

Effect of Organic Amendments on Efficacy of Biological Control of Seedling Damping-off of Cucumber with Several Microbial Products (유기물 첨가가 오이 모잘록병에 대한 미생물 제제의 생물학적 방제 효과 증진에 미치는 영향)

  • Lee, Jong-Moon;Do, Eun-Soo;Baik, Su-Bong;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Several microbial biocontrol products (Greenbiotech Co., Paju, Korea), Green-all T (Trichoderma harzianum), Green-all S(Bacillus sp.) and Green-all G (Streptomyces sp.) were supplemented with organic amendments such as sawdusts and rice hulls to study on efficacy of biological control of seeding damping-off of cucumber caused by Pythium ultimum. Sawdusts amended into potato dextrose agar alone could inhibit in vitro mycelial growth of P. ultimum. All there microbial products of Green-all T, Green-all G and Green-all S significantly reduced seeding damping-off (LSD, P=0.05). However, several amendments such as sawdusts and rice hulls into Green-all T and Green-all S products did not increase efficacy of biological control compared to non-amended treatment. In contrast, supplements of aminodoctor containing several amino acids (Greenbiotech Co., Korea) into Green-all G product significantly increased efficacy of biological control of seeding damping-off, resulting in from 42% to 2% disease incidence in relation to seedling emergence (LSD, P=0.05). Also, amendment of sawdusts into Tricoderma product significantly increased efficacy of biological control as disease index of 5.0 compared to non-amended control of 56.0 in Green-all T product alone. This indicates that organic amendments could increase efficacy of biological control of cucumber seedling damping-off.

Toxicity and Characteristics of Antifungal Substances Produced by Bacillus amyloliquefaciens IUB158-03 (Bacillus amyloliquefaciens IUB158-03이 생산하는 항진균물질의 생화학적 특성 및 독성)

  • Kim, Hye-Young;Lee, Tae-Soo
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1672-1678
    • /
    • 2009
  • The purified antifungal substances produced by Bacillus amyloliquefaciens IUB158-03 was positive to ninhydrin but negative to aniline, suggesting that the antifungal substance could be a peptide. FAB-MS, UV adsorption spectrum, and amino acid composition analysis revealed that the molecular weight of the antifungal substance was 1042 and that maximal adsorption was at 220 nm and 277 nm. The antifungal substance was composed of $Asn_3$, $Gln_2$, $Ser_1$, $Gly_1$, and $Tyr_1$. The composition and structural characteristics of antifungal substance were analysed by $^1H$-NMR spectrum, $^1H$-COSY, HMQC, which revealed that the compound belongs to the iturin A family. Temperature and pH had little effect on the stability of the antifungal substance in the ranges of $-70{\sim}121^{\circ}C$ and pH 6.0~10.0, respectively. It showed strong antibiotic activity against fungi. An in vitro cytotoxicity test using NIH3T3 cell showed that the antifungal substance does not have cytotoxicity. The number of circulating leukocytes and the hematobiological analysis of the mice administered with the antifungal substances was similar to those of the control group, indicating no cytotoxicity in vivo. Therefore, the antifungal substances extracted from culture broth of Bacillus amyloliquefaciens IUB158-03 have future potential as biocontrol agents against plant diseases caused by fungi.

Evaluation for Biocontrol Potentials of Nematophagous Fungi against Root-knot Nematode (뿌리혹 선충에 대한 선충 천적 기생균의 생물적 방제 효과)

  • 정미정;장성식;김희규;박창석;추호렬
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.382-388
    • /
    • 1993
  • Five nematophagous fungi, Arthrobotrys arthrobotryoides, A. conoides, A. oligospora, Dactylella lobata and Fusarium oxysporum were evaluated for nematicidal effect on Meloidogyne hapla in greenhouse. Treatment of nematophagous fungi reduced the root galling by M. hapla and increased red-pepper growth in naturally infested pot soil. Number of galling were significantly less inall pots in 4 different inoculum densities of 5 nematophagous fungi compared to untreated plots. Especially, treatment of F. oxysprum resutled significant reduction of root gall of red-pepper. The increased shoot growth was significantly higher in pretreated plots by A. arthrobotryoides, A. conoides, A. oligospora, D. lobata and F. oxysporum at inoculum concentration of 1:100 but other treatments were not significantly increased shoot growth. Two promising fungi, D. lobata and F. oxysporum were selected in greenhouse test and in vitro results of previously experiment and applied to field plot naturally infested by M. hapla serverely. Number of galls were remarkably fewer in plots treated with D. lobata and F. oxysporum at either 1:70 or 1:100 concentration compared to the untreated plots. The shoot growth of red-pepper was increased strikingly in the plots following the red-pepper was increased strikingly in the plots following the treatment of both fungus than greenhouse test.

  • PDF