• Title/Summary/Keyword: Bioconcentration

Search Result 79, Processing Time 0.032 seconds

Determination of the Bioconcentration Factor in Some Pesticides by Flow-through Fish Test (Flow-through fish test를 이용한 일부 농약의 생물농축예수의 측정)

  • 민경진;차춘근
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.37-42
    • /
    • 2001
  • Zebrafish(Brachdanio rerio)를 실험어류로 하여 methidathion 과 phosalone의 생물농축계수(bioconcentration factor : BCF)와 배설속도상수 (depuration rate constant) 및 LC$_{50}$를 측정하였다. Methidathion의 24, 48, 72, 96시간 LC$_{50}$는 각각 28.34, 35.98, 24.43, 22.03 mg/$\ell$로 측정되었다. Methidathion 0.22 mg/$\ell$(고농도)와 0.022 mg/$\ell$(저농도)에서 어류 체내에서의 농축정도는 두 농도군에서 각각 12시간 이후에 정류상태에 도달하여 72시간동안 거의 일정하였고, BCF값도 12시간에서 72시간 사이에 고농도와 저농도에서 8.72(n=4)와 11.25(n=4)로 조사되었다. 배설속도상수는 고농도와 저농도에서 6시간 이내에 모두 배설되어 배설속도상수를 구할 수 없었다. Phosalone의 24, 48, 72, 96시간 LC$_{50}$는 각각 3.76, 2.43, 1.86, 1.05 mg/$\ell$로 측정되었다. Zebrafish 체내에서의 농축정도와 BCF값은 고농도(0.01 mg/$\ell$)에서 12시간 이후에 정류상태에 도달하여 72시간동안 거의 일정하였고, BCF값은 12시간에서 72시간 사이에 48.88(n=4)로 측정되었다. 저농도(0.001 mg/$\ell$)에서는 실험 전기간동안 zebrafish 체내에서 phosalone이 검출되지 않아 BCF값을 산출할 수 없었다. Zebrafish 체내에서 phosalone(고농도)의 배설속도상수와 반감기를 구하기 위하여 6,12시간의 배설실험 결과 각각 0.17$hr^{-1}$과 4.01 시간이었다. Methidathion과 phosalone의 BCF값은 phosalone이 methidathion 보다 약 5배 정도 높게 나타났으며, 농약의 배설속도는 phosalone이 methidathion보다 빨랐다.

  • PDF

Bioconcentration of Perfluorinated Compounds in Fish from Gulpo Stream (굴포천에 서식하는 어류체내 과불화화합물 농축특성)

  • Cho, Chon-Rae;Cho, Jae-Gu;Eom, Ig-Chun;Lee, Byoung-Cheun;Kim, Sue-Jin;Choi, Kyung-Hee;Yoon, Jun-Heon
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.229-240
    • /
    • 2010
  • During the last decade, perfluorinated compounds (PFCs) have gained more attention due to their toxicity and global distribution. The aim of this study was to examine the distribution and bioaccumulation of perfluorinated compounds (PFCs) in aquatic wildlife effected from a sewage treatment plant. The concentrations of 12 PFCs were determined in water, sediment and fish samples. PFOS were predominantly detected in both ambient environment and fish. In fish, the concentration of PFCs in blood was the highest (i.e., 112.47 ng/mL wet-wt. PFOS) in comparison to other tissues. However, PFOA and PFHpS were highly detected in gonad as 3.87 and 4.58 ng/g wet-wt., respectively. The bioconcentration factor (BCF) of PFCs was greatest in the blood > liver${\cong}$gonad > kidney > gill, and lowest in the muscle tissue. The BCFs of PFUnDA (39,000), PFDA (2,700) and PFOS (1,100) were rated as high values based on wet weight concentration. BCFs increased with increasing the length of the perfluoralkyl chain.

Determination of Short-term Bioconcentration Factor and Partition Coefficient on Chlorothalonil in Carassius auratus(goldfish) (Carassius auratus(goldfish)를 이용한 Chlorothalonil의 단기간 생물농축계수와 분배계수의 측정)

  • 차춘근;전봉식;민경진
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.38-47
    • /
    • 1995
  • The Bioconcentration factor (BCF) is used as an important criterion in the risk assessment of environmental contaminants. Also it can be used as indicator of biomagnification of environmentally hazardous chemicals through food-chain as well as a tool for ranking the bioconcentration potential of the chemicals in the environment. This paper reports the measured BCF value on Chlorothalonil in Carassius auratus(goldfish), under steady state, and examined correlation between the BCF value and the partition coefficient or acute toxicity or physicochemical properties. Carassius auratus(goldfish) was chosen as test organism and test period were 3-day, 5-day. Experimental concentrations were 0.005, 0.01 and 0.05 ppm. Chlorothalonil in fish tissue and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detecting and quantitating of Chlorothalonil. Partition coefficient was determined by stir-flask method. $LC_{50}$ was determined on Chlorothalonil. Carbaryl and BPMC. The obtained results were as follows. 1. It was possible to determine short term BCFs of Chlorothalonil through relatively simple procedure in environmental concentrations. 2. $BF_3$ of Chlorothalonil in concentration of 0.005, 0.01 and 0.05 ppm were 2.1866$\pm$0.23446, 3.5269$\pm$0.23517, 10.2045$\pm$0.18053 and BCFs were 6.6543$\pm$0.55257, 6.9774$\pm$0.02500, 23.4576$\pm$2.06884, respectively. 3. Chlorothalonil concentration in fish extract and BCFs of Chlorothalonil were increased as increasing test concentration and prolonging test period. 4. Fate of test-water concentration on Chlorothalonil was greater than that of control-water con-centration. It is considered that greater fate of test-water concentration on Chlorothalonil is due to hydrolyzing nitrile group under the mild condition and substituting chloro group by some aromatic compounds in test water. 5. Determined logP of Chlorothalonil was 2.80. And determined $LC_{50}$ of Chlorothalonil in time of 24, 48, 72 and 96 hr were 0.1684, 0.1402, 0.1400, 0.1352(mg/l) respectively. And $LC_{50}$ of Carbaryl in above times were 19.918, 18.635, 18.466, 18.12(mg/l) respectively. $LC_{50}$ of BPMC were 10.248, 9.166, 9.087, 8.921(mg/l) respectively. 6. It is suggested that the BCF of Carbamates depend on partition coefficients. But BCF of Chlorothalonil, organochlorine pesticide, would be strongly influenced by steric, electronic effect of substituents than partition coefficient.

  • PDF

Effect of Interaction of BPMC, Carbaryl and Chlorothalonii on short-term Bioconcentration Factor in Carassius auratus(goldfish) (BPMC, Carbaryl 및 Chiorothalonil의 상호작용이 Carassius auratus(goldfish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향)

  • 민경진;차춘근;전봉식;김근배
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.72-82
    • /
    • 1997
  • This study was performed to investigate the effect of co-existence of BPMC, carbaryl and chlorothalonil on the short-term bioconcentration factor in Carassius auratus(goldfish). The fishes were exposed to the combined treatment of BPMC, carbaryl and chlorothalonil (0.05 ppm+0.05 ppm+0.005 ppm, 0.05 ppm+0.05 ppm+0.010 ppm, 0.05 ppm+0.10 ppm+0.005 ppm, 0.10 ppm+0.05 ppm+0.005 ppm, 0.10 ppm+0.10 ppm+0.005 ppm) for 3 and 5 days, respectively. BPMC, carbaryl and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate BPMC, carbaryl and chlorothalonil. 3-day and 5-day bioconcentration factors(BCF$_3$ and BCF$_5$) of each pesticide were calculated from the quantitation results. The depuration rate of each pesticide-from the whole body of fish was determined over the 72-h period after combined treatment.The results were as follows: BCF$_3$ values of BPMC were 4.163, 4.011, 4.122, 4.750 and 4.842 when the concentration of BPMC+ carbaryl+chlorothalonil in combined treatment were 0.05 ppm+0.05 ppm+0.005 ppm, 0.05 ppm+0.05 ppm+0.010 ppm, 0.05 ppm+0.10 ppm+0.005 ppm, 0.10 ppm+0.05 ppm+0.005 ppm and 0.10 ppm+ 0.10 ppm+0.005 ppm. BCF$_5$ values of BPMC were 3.465, 3.270, 3.472, 3.162, 4.227 and 4.157, respectively, under the above conditions. While BCF$_3$ values of carbaryl were 4.583, 4.642, 4.571, 3. 637 and 3.529, respectively, and BCF$_5$ values of carbaryl were 3.932, 3.797, 3.843, 4.293 and 4.132, respectively, under the conditions. While BCF$_3$ values of chlorothalonil were 2.024, 3.532, 2.213, 2.157 and 2.271, respectively, and BCF$_5$ of chlorothalonil were 6.712, 7.013, 6.457, 6.694 and 6.597, respectively, under the conditions. Depuration rate constants of BPMC were 0.019, 0.018, 0.020, 0.022 and 0.021 when the concentration of BPMC+carbaryl+chlorothalonil in combined treatment were the same as above. And depuration rate constants of carbaryl were 0.030, 0.029, 0.030, 0.029 and 0.031, respectively, under the same condition of pesticide mixtures. While depuration rate constants of chlorothalonil were 0.004, 0.004, 0.003, 0.004 and 0.003, respectively, under the same condition. It was observed that no significant differences of BCFs and concentrations of the compounds in fish extracts, test water between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations was due to low concentrations, near environmental level, 0.005-0.1 ppm. Coexistence of BPMC, carbaryl and chlorothalonil had no effect on depuration rate of each pesticide and depuration rate of chlorothalonil was investigated 1/8 and 1/6 slower than those of carbaryl and BPMC in combined treatment. It is similar result in comparison with single treatment. Therefore, it is considered that the persistence of chlorothalonil in fish body would be higher than those of carbaryl and BPMC.

  • PDF

Effect of Co-existence of Carbofuran and Chlorothalonil on the Short-term Bioconcentration Factor in Brachydanio rerio(zebrafish) (Carbofuran과 Chiorothalonil의 공존이 Brachydanio rerio(zebrafish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향)

  • 민경진;차춘근
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.64-71
    • /
    • 1997
  • This study was performed to investigate the effect of co-existence of carbofuran and chlorothalonil on the short-term bioconcentration factor in Brachydanio rerio(zebrafish). The fishes were exposed to the single and combined treatment of carbofuran and chlorothalonil for 1, 3 and 5 days. Experimental concentrations of carbofuran were 0.05 and 0.10 ppm under the single treatment. And those of chlorothalonil were 0.005 and 0.010 ppm. Experimental concentrations of the combined treatment of carbofuran and chlorothalonil were 0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm for 1, 3 and 5 days, respectively. Carbofuran and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbofuran and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors(BCF$_1$, BCF$_3$ and BCF$_5$) of each pesticide were obtained from the quantitation results. The depuration rate of each pesticide was determined over the 24-h period after combined treatment. The results were as follows: Carbofuran did not bioaccumulate in zebrafish under the single and combined treatment for testing periods. BCF$_1$ values of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.508, 0.621, BCF$_3$ were 1.327, 1.511 and BCF$_5$ were 1.331, 1.597, respectively. BCF$_1$ values of chlorothalonil were 0.512, 0.520 and 0.619, respectively, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF$_3$ values of chlorothalonil 1.341, 1.338 and 1.513, respectively, and BCF$_5$ values of chlorothalonil were 1.332, 1.327 and 1.521, respectively, under the above combined treatment. Depuration rate constants of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.011 and 0.012. Depuration rate constants of chlorothalonil were 0.011, 0.010 and 0.011, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. It was observed that no significant difference of carbofuran and chlorothalonil concentration in fish extracts, test water, BCFs and depuration rate constants of carbofuran and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations due to lower concentrations than LC$_{50}$. It is suggested that the difference of BCFs between carbofuran and chlorothalonil due to those of fat composition of fish and solubility of carbofuran and chlorothaionil.

  • PDF

Effects of Co-existence of Dichlorvos and Phosalone on the Bioconcentration in Zebrafish (Brachydanio rerio) (Dichlorvos와 Phosalone의 공존의 Zebrafish(Brachydanio rerio)의 생물농축성에 미치는 영향)

  • Min, Kyung-Jin;Park, Jang-Woo;Cha, Chun-Geun
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.251-256
    • /
    • 2003
  • This study performed to investigate the effect of co-existence of dichlorvos and phosalone on the bioconcentration in zebrafish (Brachydanio rerio). The bioconcentration of the pesticides was reached an equilibrium more rapidly in an exposure of the binary mixture than that in an indicidual exposure. The BCF values and depuration rate constants for dichlorvos and phosalone in the binary mixture in the zebrafish were not significatly different from that of single pesticidel The results suggest that the effect of co-existence of pesticides on bioconcenteraion and depuration in zebrafish can be evaluated with single pesticide datum.

Bioaccumulation of Herbicide Butachlor in Killifish (송사리에서 제초제 Butachlor의 생물농축성)

  • Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.45 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • A bioconcentration experiment was performed for killifish using nonradioactive and radioactive butachlor. At 0.036 ppm concentration, the highest bioconcentration ratio $(C_f/C_w)$ and BCF at steady state recorded as 296 and 87 respectively. And at 0.0036 ppm concentration, the highest $C_f/C_w$ ratio was 169 and the BCF was 51 at steady state. Considering the experimental variation of the BCF's, the BCF of butachlor was tentatively determined to be $69{\pm}28$. And the $^{14}C-butachlor$ and its metabolites depurated about 50% within 12 hours and 90% within 30 hours after depuration experiment started. And in vivo metabolites, designated as M-I, M-II, and M-III, were found in killifish and the excretes as butachlor was metabolised.

Effect of Co-existence of Carbaryl and Chlorothalonil on the Short-term Bioconcentration Factor in Carassius auratus(goldfish) (Carbaryl과 Chlorothalonil의 공존이 Carassius auratus(goldfish)를 이용한 생물농축계수에 미치는 영향)

  • 민경진;김근배;차춘근;박천만;강회양
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.16-24
    • /
    • 1996
  • This study was performed to investigate the effect of co-existence of carbaryl and chlorothalonil on the short-term bioconcentration factor in Carassius auratus(goldfish). The fishes were exposed to the combined treatment of carbaryl and chlorothalonil(0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm) for 1, 3 and 5 days, respectively. Carbaryl and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbaryl and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors($BCF_1, BCF_3$ and $BCF_5$) of each pesticide were calculated from the quantitation results. The depuration rate of each pesticide from the whole body of fish was determined over the 72-h period after combined treatment. The results were as follows: $BCF_1$ values of carbaryl were 3.521, 3.802 and 3.587, respectively, when the concentration of carbaryl and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF3 values of carbaryl were 4.825, 4.556 and 3.828, respectively, and $BCF_5$ values of carbaryl were 3.974, 3.921 and 4.186, respectively, under the conditions. While $BCF_1$ of chlorothalonil were 0.829, 0.829 and 1.540, respectively, under the same condition of pesticide concentrations $BCF_3$ of chlorothalonil were 2.040, 2.208 and 3.633, respectively, and $BCF_5$ of chlorothalonil were 6.222, 6.667 and 7.095, respectively, under the conditions. Depuration rate constants of carbaryl were 0.022, 0.022 and 0.152, respectively, when the concentration of carbaryl and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. While depuration rate constants of chlorothalonil were 0.004, 0.004 and 0.006, respectively, under the same condition of pesticide concentrations. It was observed that no significant differences of carbaryl and chlorothalonil concentration in fish extracts, test water and $BCF_s$ of carbaryl and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations was due to low concentrations, 0.005~0.1 ppm. Co-existence of carbaryl and chlorothalonil had no effect on excretion of each pesticide and depuration rate of chlorothalonil was investigated 1/8 slower than that of carbaryl in combined treatment. Therefore, it is considered that the persistence of chlorothalonil in fish body would be higher than that of carbaryl.

  • PDF

Difference in Species of Test Fish on the Determination of Short-term Bioconcentration Factor (단기간 생물농축계수의 측정에 있어서 실험어류의 종에 따른 차이)

  • 민경진;차춘근;전봉식;김근배
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • This study was performed to investigate the difference in species of test fish on the determination of short-term bioconcentration factor in zebrafish(Brachydanio rerio), red sword tail(Xiphophorus hellieri) and goldfish(Carassius auratus). Experimental concentrations of carbamates were 0.05 and 0.10 ppm and chlorothalonil were 0.005 and 0.01 ppm for 3 and 5 days, respectively. This paper reports the measured BCF value on pesticides in various species of test fish, under steady state, and examined correlation between the BCF value and depuration rate constant or LC$_{50}$ or lipid content. Carbamates and chlorothalonil concentration in fish extract and BCF of carbamate and chlorothalonil were increased as incresing test concentration. Carbamates concentration in fish extract and BCF of carbamate were decreased as incresing test period, but chlorothalonil concentration in fish extract and BCF of chlorothalonil were increased as prolonging test period. Determined pesticide concentration in fish extract and BCF were highest in red sword tail, and followed by goldfish, and zebrafish. Determined depuration rate constant were highest in zebrafish, and followed by goldfish, and red sword tail. 96hr-LC$_{50}$ were highest in red sword tail, and followed by zebrafish, and goldfish. Lipid compositions were highest in red sword tail, and followed by goldfish, and zebrafish. Therefore, it is suggested that the difference of BCF between each pesticide due to those of lipid composition of fish and deputation rate constant, while LC$_{50}$ have no effect on BCF.

  • PDF

Bioaccumulation and Baseline Toxicity of Hydrophobic Chemicals: Molecular Size Cutoff, Kinetic Limitations, and Chemical Activity Cut-off (소수성화학물질의 생물축적과 기저독성: 분자크기, 반응속도, 화학적 활성도에 따른 제약)

  • Kwon, Jung-Hwan
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • It has been observed that the linear relationship between the logarithm of bioconcentration factor (log BCF) of highly hydrophobic chemicals and their log $K_{ow}$ breaks when log $K_{ow}$ becomes greater than 6.0. Consequently, super hydrophobic chemicals were not thought to cause baseline toxicity as a single compound. Researchers often call this phenomenon as "hydrophobicity cutoff" meaning that bioconcentration or corresponding baseline toxicity has a certain cutoff at high log $K_{ow}$ value of hydrophobic organic pollutants. The underlying assumption is that the increased molecular size with increasing hydrophobicity prohibits highly hydrophobic compounds from crossing biological membranes. However, there are debates among scientists about mechanisms and at which log $K_{ow}$ this phenomenon occurs. This paper reviews three hypotheses to explain observed "cutoff": steric effects, kinetic or physiological limitations, and chemical activity cutoff. Although the critical molecular size that makes biological membranes not permeable to hydrophobic organic chemicals is uncertain, size effects in combination with kinetic limitation would explain observed non-linearity between log BCF and log $K_{ow}$. Chemical activity of hydrophobic chemicals generally decreases with increasing melting point at their aqueous solubility. Thus, there may be a chemical activity cutoff of baseline toxicity if there is a critical chemical activity over which baseline effects can be observed.