Browse > Article

Bioaccumulation and Baseline Toxicity of Hydrophobic Chemicals: Molecular Size Cutoff, Kinetic Limitations, and Chemical Activity Cut-off  

Kwon, Jung-Hwan (Department of Environmental Engineering, Ajou University)
Publication Information
Environmental Analysis Health and Toxicology / v.23, no.2, 2008 , pp. 67-77 More about this Journal
Abstract
It has been observed that the linear relationship between the logarithm of bioconcentration factor (log BCF) of highly hydrophobic chemicals and their log $K_{ow}$ breaks when log $K_{ow}$ becomes greater than 6.0. Consequently, super hydrophobic chemicals were not thought to cause baseline toxicity as a single compound. Researchers often call this phenomenon as "hydrophobicity cutoff" meaning that bioconcentration or corresponding baseline toxicity has a certain cutoff at high log $K_{ow}$ value of hydrophobic organic pollutants. The underlying assumption is that the increased molecular size with increasing hydrophobicity prohibits highly hydrophobic compounds from crossing biological membranes. However, there are debates among scientists about mechanisms and at which log $K_{ow}$ this phenomenon occurs. This paper reviews three hypotheses to explain observed "cutoff": steric effects, kinetic or physiological limitations, and chemical activity cutoff. Although the critical molecular size that makes biological membranes not permeable to hydrophobic organic chemicals is uncertain, size effects in combination with kinetic limitation would explain observed non-linearity between log BCF and log $K_{ow}$. Chemical activity of hydrophobic chemicals generally decreases with increasing melting point at their aqueous solubility. Thus, there may be a chemical activity cutoff of baseline toxicity if there is a critical chemical activity over which baseline effects can be observed.
Keywords
biological membranes; diffusion; melting point; physiological limitations; steric effects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA and Klamer HJC. Partition controlled delivery of hydrophobic substances in toxicity tests using poly(dimethylsiloxane) (PDMS) films, Environ Sci Technol 2001; 35(20): 4097-4102   DOI   ScienceOn
2 D'Adamo R, Pelosi S, Trotta P and Sansone G. Bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in aquatic organisms, Mar Chem 1997; 56(1-2): 45-49   DOI   ScienceOn
3 Davies RP and Dobbs AJ. The prediction of bioconcentration in fish, Wat Res 1984; 18(10): 1253-1262   DOI   ScienceOn
4 Escher BI, Schwarzenbach RP and Westall JC. Evaluation of liposome-water partitioning of organic acids and bases. 1. Development of a sorption model, Environ Sci Technol 2000; 34(18): 3954-3961   DOI   ScienceOn
5 Gobas FAPC and Morrison HA. Bioconcentration and biomagnification in the aquatic environment. In: Boethling RS, Mackay D, editors. Handbook of Property Estimation Methods for Chemicals. Boca Raton, FL: CRC Press. 2000: p. 189-231
6 Heringa MB, Pastor D, Algra J, Vaes WHJ and Hermens JLM. Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with [H-3]estradiol, Anal Chem 2002; 74(23): 5993-5997   DOI   ScienceOn
7 Heringa MB, Schreurs RHMM, Busser F, Van Der Saag PT, Van Der Burg B, and Hermens JLM. Toward more useful in vitro toxicity data with measured free concentrations, Environ Sci Technol 2004; 38(23): 6263-6270   DOI   ScienceOn
8 Kwon J-H, Liljestran HM Katz LE and Yamamoto H. Partitioning thermodynamics of selected endocrine disruptors between water and synthetic membrane vesicles: Effects of membrane compositions, Environ Sci Technol 2007b; 41(11): 4011-4018   DOI   ScienceOn
9 Lewis GN. The law of physico-chemical change, Proc Am Acad Arts Sci 1901; 37: 49-69   DOI
10 Moore MN. Do nanoparticles present ecotoxicological risks for the health of aquatic environment?, Environ Int 2006; 32(8): 967-976   DOI   ScienceOn
11 Reichenberg F, Smedes F, Jonsson JA and Mayer P. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials, Chemistry Central Journal 2008; (In Press)
12 Sijm DTHM and van der Linde A. Size-dependent biocon-centration kinetics of hydrophobic organic-chemicals in fish based on diffusive mass-transfer and allometric relationships, Environ Sci Technol 1995; 29(11):2769- 2777   DOI   ScienceOn
13 Sijm DTHM, Verberne ME, Dejonge WJ, Pärt P and Opperhuizen A. Allometry in the uptake of hydrophobic chemicals determined in-vivo and in isolated-perfused gills, Toxicol Appl Pharm 1995; 131(1): 130-135   DOI   ScienceOn
14 Ter Laak TL, Mayer P, Klamer HJC and Hermens JLM. Effects of dilution on the exposure in sediment toxicity tests buffering of freely dissolved concentrations and changes in mixture composition, Environ Toxicol Chem 2007; 26(10): 2187-2191   DOI   ScienceOn
15 Albert B, Johnson A, Lewis J, Raff M, Roberts K and Walter P. Molecular Biology of the Cell, 4th edition. New York, NY, USA: Garland Science. 2002
16 Vaes WHJ, Ramos EU, Hamwijk C, vanHolsteijn I, Blaauboer BJ, Seinen W, Verhaar HJM, and Hermens JLM. Solid phase microextraction as a tool to determine membrane/ water partition coefficients and bioavailable concentrations in in vitro systems, Chem Res Toxicol 1997; 10(10): 1067-1072   DOI   ScienceOn
17 Bopp SK, Bols NC and Schirmer K. Development of a solvent- free, solid-phase in vitro bioassay using vertebrate cells, Environ Toxicol Chem 2006; 25(5): 1390-1398   DOI   ScienceOn
18 Bruggeman WA, Opperhuizen A, Wijbenga A and Hutzinger O. Bioaccumulation of super-lipophilic chemicals in fish, Toxicol Environ Chem 1984; 7(3):173-189   DOI   ScienceOn
19 Gobas FAPC, Lahittete JM, Garofalo G, Wan YS and Mackay D. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicalscomparison with 1-octanol-water partitioning, J Pharm Sci 1988; 77(3): 265-272   DOI
20 Meyer H. Welcher eigenschaft der anaesthetica bedingt ihre narkotische wirkung?, Arch Exp Pathol Pharmacol 1899; 42: 109-118   DOI
21 Mackay D. Multimedia Environmental Models-The Fugacity Approach. Chelsea, MI: Lewis Publishers, Inc. 1991
22 Kwon J-H, Wuethrich T and Escher BI. Baseline toxicity of hydrophobic compounds: Development of a kinetically controlled dosing system and determination of membrane perturbation; Presented at SETAC EU 18th Annual Meeting 2008; Warsaw, Poland
23 Sangster J. Octanol-water partition coefficients of simple organic compounds, J Phys Chem Ref Data 1989; 18(3): 1111-1229   DOI
24 Escher BI and Hermens JLM. Internal exposure: Linking bioavailability to effects, Environ Sci Technol 2004; 38 (23): 455A-462A   DOI
25 Gobas FAPC, Opperhuizen A and Hutzinger O. Bioconcentration of hydrophobic chemicals in fish-relationship with membrane permeation, Environ Toxicol Chem 1986; 5(7): 637-646   DOI
26 Kelly BC, Ikonomou MG, Blair JD, Morin AE and Gobas FAPC. Food-web specific biomagnification of persistent organic pollutants, Science 2007; 317(5835): 236-239   DOI   ScienceOn
27 Chiou CT, Schmedding DW and Manes M. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes, Environ Sci Technol 2005; 39(22): 8840-8846   DOI   ScienceOn
28 Kwon J-H, Liljestrand HM and Katz LE. Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles, Environ Toxicol Chem 2006; 25(8): 1984-1992   DOI   ScienceOn
29 Opperhuizen A, van der Velde EW, Gobas FAPC, Liem DAK and van der Steen JMD. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals, Chemosphere 1985; 14(11/12): 1871- 1896   DOI   ScienceOn
30 Gobas FAPC, Wilcockson JB, Russell RW, and Haffner GD. Mechanism of biomagnification in fish under laboratory and field conditions, Environ Sci Technol 1999; 33(1): 133-141   DOI   ScienceOn
31 Meylan WM and Howard PH. Atom fragment contribution method for estimating octanol-water partition-coefficients, J Pharm Sci 1995; 84(1): 83-92   DOI   ScienceOn
32 UNEP. 2007. Stockholm Convention on Persistent Organic Pollutants (POPs)
33 Muir DCG and Yarechewski AL. Dietary accumulation of four chlorinated dioxin congeners by rainbow trout and fathead minnows, Environ Toxicol Chem 1988; 7(3): 227-236   DOI
34 Franks NP and Lieb WR. Molecular and cellular mechanisms of general-anesthesia, Nature 1994; 367(6464): 607-614   DOI   ScienceOn
35 Jonker MTO and van der Heijden SA. Bioconcentration factor hydrophobicity cutoff: An artificial phenomenon reconstructed, Environ Sci Technol 2007; 41(21): 7363- 7369   DOI   ScienceOn
36 Neely WB, Branson DR and Blau GE. Partition coefficients to measure bioconcentration potential of organic chemicals in fish, Environ Sci Technol 1974; 8(13): 1113-1115   DOI   ScienceOn
37 Escher BI and Hermens JLM. Modes of action in ecotoxicology: Their role in body burdens, species sensitivity, QSARs, and mixture effects, Environ Sci Technol 2002; 36(20): 4201-4217   DOI   ScienceOn
38 Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H and Gouchie S. Improved method for estimating bioconcentration/bioaccumulation factor from octanol /water partition coefficient, Environ Toxicol Chem 1999; 18(4): 664-672   DOI
39 Dimitrov S, Dimitrova N, Parkerton T, Comber M, Bonnell M and Mekenyan O. Base-line model for identifying the bioaccumulation potential of chemicals, SAR QSAR Environ Res 2005; 16(6): 531-554   DOI   ScienceOn
40 Mackay D. Correlation of bioconcentration factors, Environ Sci Technol 1982; 16(5): 274-278   DOI   ScienceOn
41 Mayer P and Reichenberg F. Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?, Environ Toxi-col Chem 2006; 25(10): 2639-2644   DOI   ScienceOn
42 Barber MC. A review and comparison of models for predicting dynamic chemical bioconcentration in fish, Environ Toxicol Chem 2003; 22(9): 1963-1992   DOI   ScienceOn
43 EC. 1996. Technical Guidance Document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) 1488/94 on risk assessment for existing substances. PART III, ISBN 92-827-8011-2. Luxembourg
44 Reichenberg F and Mayer P. Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils, Environ Toxicol Chem 2006; 25(5): 1239-1245   DOI   ScienceOn
45 Smejtek P, Blochel A and Wang SR. Hydrophobicity and sorption of chlorophenolates to lipid membranes, Chemosphere 1996; 33(1): 177-201   DOI   ScienceOn
46 Kwon J-H, Katz LE, and Liljestrand HM. Modeling binding equilibrium in a competitive estrogen receptor binding assay, Chemosphere 2007a; 69: 1025-1031   DOI   ScienceOn
47 Chiou CT, Schmedding DW and Manes M. Partitioning of Organic-Compounds in Octanol-Water Systems, Environ Sci Technol 1982; 16(1): 4-10
48 Verhaar HJM, van Leeuwen CJ and Hermens JLM. Classifying environmental pollutants. 1. Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 1992; 25(4): 471-491   DOI   ScienceOn
49 Nichols JW, Fitzsimmons PN and Burkhard LP. In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation, Environ Toxicol Chem 2007; 26(6): 1304- 1319   DOI   ScienceOn
50 Dulfer WJ and Govers HAJ. Membrane water partitioning of polychlorinated-biphenyls in small unilamellar vesicles of 4 saturated phosphatidylcholines, Environ Sci Technol 1995; 29(10): 2548-2554   DOI   ScienceOn
51 van Wezel AP, Cornelissen G, van Miltenburg JK and Opperhuizen A. Membrane burdens of chlorinated benzenes lower the main phase transition temperature in dipalmitoyl- phosphatidylcholine vesicles: Implications for toxicity by narcotic chemicals, Environ Toxicol Chem 1996; 15(2): 203-212   DOI
52 Singer SJ and Nicolson GL. Fluid mosaic model of structure of cell-membranes, Science 1972; 175(4023): 720-731   DOI   ScienceOn
53 Katz Y and Diamond JM. Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water, J Mem Biol 1974; 17(2): 101-120   DOI
54 Swackhamer DL and Skoglund RS. Bioaccumulation of PCBs by algae: Kinetics versus equilibrium, Environ Toxicol Chem 1993; 12(5): 831-838   DOI
55 Dimitrov SD, Dimitrova NC, Walker JD, Veith GD and Mekenyan OG. Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size, Pure Appl Chem 2002; 74(10):1823-1830   DOI   ScienceOn
56 Muir DCG, Yarechewski AL, Knoll A and Webster GRB. Bioconcentration and disposition of 1,3,6,8-tetrachlorodibenzo- p-dioxin and octachlorodibenzo-p-dioxin by rainbow trout and fathead minnows, Environ Toxicol Chem 1986; 5(3): 261-272   DOI
57 Escher BI and Schwarzenbach RP. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentrations in aquatic organisms, Aquat Sci 2002; 64(1): 20- 35   DOI
58 Escher BI, Eggen RIL, Schreiber U, Schreiber Z, Vye E, Wisner B and Schwarzenbach RP. Baseline toxicity (narcosis) of organic chemicals determined by in vitro membrane potential measurements in energy-transducing membranes, Environ Sci Technol 2002; 36(9): 1971- 1979   DOI   ScienceOn