• Title/Summary/Keyword: Bioconcentration

Search Result 79, Processing Time 0.031 seconds

Determination of Bioconcentration Factor on Phosphamidon and Profenofos by Flow-through Fish Test (Flow-through fish test를 이용한 Phosphamidon과 Profenofos의 생물농축계수의 측정)

  • Min, Kyung-Jin;Cha, Chun-Geun;Seo, Seol
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2000
  • The present study was performed to investigate the bioconcentration of phosphamidon and profenofos. The BCFs(bioconcentration factors), depuration rate constants and LC$_{50}$ for two pesticides in zebrafish(Brachydanio rerio) were measured by the flow-through system(OECD guideline 305). The results obtained are summarized as follows: The 24-hrs LC$_{50}$, 48-hrs LC$_{50}$, 72-hrs LC.n and 96-hrs LC$_{50}$ were more than 100 mg/l for phosphamidon. The concentration of phosphamidon in zebrafish reached an equilibrium in 12 hrs at low and high concentrations(0.2 mg/l and 1 mg/1). The average BCF values of phosphamidon were less than 1 at low(0.96, n=7) and high concentrations (0.89, n=7) after 12~168 hrs. Depuration rate constants of phosphamidon were 0.18 hr-1 and 0.21 hr-1, half-life of phosphamidon were 3.85 and 3.30 at low and high concentrations(0.2 mg/l and 1 mg/l), respectively, The concentrations of phosphamidon in zebrafish at low and high concentrations were rapidly decreased after 8(0.04 $\mu\textrm{g}$/g) and 12 hrs(0.07 $\mu\textrm{g}$/g). The 24-hrs LC$_{50}$, 48-hrs LC$_{50}$, 72-hrs LC$_{50}$ and 96-hrs LC$_{50}$ were 2.9, 2.6, 2.2 and 2.0 mg/1 for profenofos. The concentration of profenofos in zebrafish reached an equilibrium in 12 hrs at five-hundredth and one-hundredth concentration of 96-hrs LC$_{50}$(0.004 mgA and 0.02 mg/1). The average BCF values of profenofos were 141.9(n=7) and 111.3(n=7) at five-hundredth and one-hundredth concentration of 96-hrs LC$_{50}$(0.004 mg/l and 0.02 mg/1) after 12~168 hrs. Depuration rate constants of profenofos were 0.09 hr$^{-1}$ and 0.10 hr$^{-1}$, half-life of profenofos were 7.70 and 6.93 at five-hundredth and one-hundredth concentration of 96-hrs LC50(0.004 mg/l and 0.02 mg/1), respectively. The concentrations of profenofos in zebrafish at five-hundredth and one-hundredth concentration of 96-hrs LC$_{50}$ decreased agter 8(0.18 $\mu\textrm{g}$/g) and 12 hrs (0.19 $\mu\textrm{g}$/g). The LC$_{50}$ value in zebrafish showed that acute toxicity of profenofos was higher than that of phosphamidon. The BCF values of profenofos were 100 times higher than those of phosphamidon, and depuration rate of phosphamidon was two times faster than that of profenofos.

  • PDF

Bioconcentration factor of perfluorochemicals for each aerial part of rice (수도작 작물의 과불소화합물 흡수이행성)

  • Choi, Geun-Hyoung;Lee, Deuk-Yeong;Bae, Ji-Yeon;Rho, Jin-Ho;Moon, Byung-Cheol;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.191-194
    • /
    • 2018
  • Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are emerging pollutants in agricultural product, and the residual patterns and the uptake potentials were only studied on several crops, not on rice. The residue level and bioconcentration factor (BCF) of PFOA and PFOS were investigated on the low ($1mg\;kg^{-1}$) and the high contaminated soil ($5mg\;kg^{-1}$) groups. The residue levels in brown rice in the low group and in the high group were 0.002-0.004 and $0.008-0.030mg\;kg^{-1}$ of the each perfluorinated compounds (PFCs), and in the rice husk were $0.035-0.074mg\;kg^{-1}$ and $0.125-0.376mg\;kg^{-1}$ of the each PFCs, respectively. Furthermore, the residues in rice straw were the highest level in the all rice parts both in the groups. The PFOA and PFOS were reached to $3.723mg\;kg^{-1}$ and $7.641mg\;kg^{-1}$, respectively, and the BCF (1.474 and 4.700) as well.

Polychlorinated Biphenyls (PCBs) in the Bio-geochemistry of Oceans

  • Kannan, Narayanan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.201-208
    • /
    • 2007
  • Polychlorinated biphenyls (PCBs) are anthropogenic contaminants found globally in water, ice, soil, air and sediment. Modern analytical techniques allow us to determine these chemicals in environmental matrices at parts per trillion levels or lower. Environmental forensic on PCBs opens up new avenues of investigation such as transport and fate of water masses in oceans, sedimentation, onset of primary production, migration of marine mammals, their population distribution and pharmacokinetics of drugs inside organisms. By virtue of persistence, bioaccumulation, bioconcentration and structure-activity relationship PCBs emerge as unconventional chemical tracers of new sort.

  • PDF

The Bioconcentration of Naphthalene in Tissues of Juvenile Olive flounder, Paralichthys olivaceus (넙치(Paralichthys olivaceus) 치어조직의 나프탈렌(Naphthalene) 생물농축)

  • Lee, Kyoung-Seon;Ryu, Hyang-Mi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.530-535
    • /
    • 2012
  • Polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, are released into the aquatic environment and have been identified as endocrine effects on marine organisms. Naphthalene makes up the highest fraction of PAHs in oil and shows the strong toxicity to aquatic organisms. I analyzed 24h-median lethal concentration (24h-$LC_{50}$) for juvenile olive flounder Paralichthys olivaceus to study the acute toxicity of naphthalene. Bioconcentrations in the gill, liver, kidney and muscle of olive flounder were analyzed after to 6 naphthalene concentrations of 0, 1000, 1800, 3200, 5600 and 10000 ${\mu}g/L$. Olive flounder has 24h-$LC_{50}$ value of 2410.76 ${\mu}g/L$ in Large group, and 2230.67 ${\mu}g/L$ in Samll group. Naphthalene concentration was varied with tissues. The concentrations of naphthalene were much higher in liver and kidney than in gill and muscle.

Ecotoxicity Estimation of Hazardous Air Pollutants Emitted from Semiconductor Manufacturing Processes Utilizing QSAR

  • Park, Hyung-Geun;Yeo, Min-Kyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3755-3761
    • /
    • 2013
  • This study aims to assess the ecological risk of the hazardous air pollutants (HAPs) emitted in the semiconductor manufacturing processes in Korea by using Quantitative Structure Activity Relationship (QSAR, EPA, US, EPI $Suite^{TM}$ 4.1). Owing to the absence of environmental standards of hazardous air pollutants in the semiconductor manufacturing processes in Korea, 18 HAPs in the semiconductor field included in both the US EPA NESHAPs and the hazardous air pollutant list of Ministry of Environment in Korea were selected. As a results 8 chemicals (44.4%) of the selected 18 HAPs were VOCs. Cyanides (cyanides) and ethylene oxides (epoxy resins), and tetrachloro-ethylene (aliphatic compounds, halides) showed long half-lives. Cyanide HAPs especially had the highest half-life with the estimated value of 356.533 days. Nickel compounds (heavy metal compounds) possessed the highest water solubility followed by acetaldehyde (aldehyde compounds), ethylene oxides, and 1,4-dioxanes. The halides, including tetrachloro-ethylenes, carbon tetra-chlorides, benzene (aromatic compounds), and lead (heavy metals), are estimated to take the longest time for biodegradation. Tetrachloroethylene, with the acute toxicity end point of 3.685-7.033 mg/L, was assessed to be the most highly toxic substance among the 18 HAPs. However, considering the absence of the HAPs in the common category of log $K_{ow}{\geq}4$and $BCF{\geq}500$, which indicates the standard of bioconcentration potentials, potentials of the bioconcentration are considered to be low.

Determination of Bioconcentration Factor on Carbamates (Carbamate계 농약의 생체농축계수 측정)

  • 민경진
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.80-89
    • /
    • 1994
  • It was reported that BCF's (Bioconcentration Factor) on Carbaryl and BPMC in concentration of 1, 2, 5 and 10 ppm, previously. Carassius auratus(goldfish) was chosen as test organism. Carbamates in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detecting and quantitating of Carbamates. Also, partition coefficients were determined with Stir flask method. To evaluate environmental toxicological profiles of tested compounds, experimental concentration were 0.05, 0.1 and 0.5 ppm in contrast to previous report. It was considered that higher BCFs of BPMC due to its higher partition coefficient compared to Carbaryl. The obtained results were as follows: 1. It was possible to determine short term BCF of Carbaryl and BPMC through relatively simple procedure in environmental concentrations. 2. BCF$_3$ of Carbaryl in concentration of 0.05, 0.1 and 0.5 ppm were 4.666 $\pm$ 0.002, 3.622 $\pm$ 0.004, 1.200 $\pm$ 0.002 and BCF$_5$ were 3.897 $\pm$ 0.005, 4.219 $\pm$ 0.017 and 1.186 $\pm$ 0.054, respectively. In the case of BPMC in same condition, BCF$_3$ were 4.077 $\pm$ 0.014, 4.900 $\pm$ 0.005, 4.750 $\pm$ 0.009 and BCF$_5$ were 3.465 $\pm$ 0.010, 4.612 $\pm$ 0.011 and 4.075 $\pm$ 0.012, respectively. 3. Carbaryl concentration in fish extract was increased as increasing test concentration, but BCF were decreased as prolonging test period, especially dropped at 0.5 ppm. 4. In the case of BPMC, BCF were decreased as increasing test concentration, but the concentration in fish extract of 3-day test group was slightly higher than that of 5-day test group. 5. Higher BPMC concentration in fish extract was due to its higher partition coefficient to compared with Carbaryl. 6. Determined logP of Carbaryl and BPMC were 2.200 and 3.180. But the calculated BCF using suggested equation was so different that predict BCF. It is suggested that BCF's of Carbamates have to be determined by experiment.

  • PDF

Determination of Bioconcentration Factor on BPMC and Carbaryl in Carassius auratus(goldfish) (Carassius auratus(goldfish)를 이용한 BPMC와 Carbaryl의 생물농축계수의 측정)

  • 박선열;민경진;강회양
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 1994
  • Bioconcentration Factor (BCF) is known as important criteria for ecotoxicology on hazardous chemicals. But there is no standard method for determining BCF and reported BCFs were slightly different in accordance with authors. This study was performed with aims to determine BCFs on BPMC and Carbaryl. Carassius auratus(goldfish) be chosen as test organism and test period were 3-day, 5-day and 10-day. Extract solvents were n-hexane and acetonitrile. GC-ECD was used to detecting carbamates. The obtained results were as follows: 1. It was possible to determine short term BCF$_s$ of Carbaryl or BPMC through relatively simple procedure. 2. BCF$_3$ of Carbaryl in concentration of 1, 2, 5, 10 ppm were 0.34 $\pm$ 0.06, 0.18 $\pm$ 0.02, 0.10 $\pm$ 0.01, 0.06 $\pm$ 0.01 respectively. BCF$_5$ of Carbaryl were 0.34 $\pm$ 0.05, 0.18 $\pm$ 0.02, 0.13 $\pm$ 0.01 and 0.07 $\pm$ 0.01, BCF$_{10}3$ of Carbaryl were 0.45 $\pm$ 0.05, 0.27 $\pm$ 0.02, 0.16 $\pm$ 0.02 and 0.09 $\pm$ 0.01. BCF$_3$ of BPMC in concentration of 1, 2, 5 ppm were 4.66 $\pm$ 0.17, 2.64 $\pm$ 0.49, 1.88 $\pm$ 0.24 respectively. BCF$_5$ of BPMC were 4.09 $\pm$ 0.50, 2.42 $\pm$ 0.37 and 1.83 $\pm$ 0.15. 3. BCF$_s$ of BPMC were decreased as increasing concentration. However, BPMC concentration in fish were increased in contrast to BCF. But more concentrated BPMC was found in fish 3-day test than found concentration in fish 5-day test. 4. Same trend appeared in Carbaryl. BCF$_s$ of Carbaryl were decreased as increasing concentration and prolonging test period. But found Carbaryl concentration in fish were increased. 5. BCF$_s$ of BPMC were higher than that of Carbaryl by 10 times, in spite of the physicochemical properties of the two carbamates were similar to each other. Further study is recommended to find out the reason of the difference.

  • PDF

Estimation of Physical-Chemical Property and Environmental Fate of Benzoyl peroxide Using (Q)SAR

  • Kim, Mi-Kyoung;Kim, Su-Hyon;Heekyung Bae;Sanghwan Song;Hyunju Koo;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik;Lee, Moon-Soon
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.154-154
    • /
    • 2002
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,375 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of seven chemicals of which human health and environmental risks are being assessed by National Institute of Environmental Research (NIER) under the frame of OECD SIDS Program. In this study, Quantitative Structure-Activity Relationships (QSAR) is used for getting adequate information on the physical-chemical property and the environmental fate of this chemical. For the assessment of benzoyl peroxide, models such as MPBPWIN for vapor pressure, KOWWIN for octanol/water partition coefficient, HENRYWIN for Henry's Law constant, AOPWIN for photolysis and BCFWN for bioconcentration factor (BCF) were used. These (Q)SAR model programmes were worked by using the SHILES (Simplified Molecular Input Line Entry System) notations. The physical-chemical properties and the environmental fate of benzoyl peroxide were estimated as followed : vapor pressure =0.00929 Pa, Log Kow = 3.43, Henry's Law constant = 0.00000354 atm-㎥/mole at 25 $^{\circ}C$, the half-life of photodegradation = 3 days, bioconcentration factor (BCF) = 92

  • PDF

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Bioconcentration of Polycyclic Aromatic Hydrocarbons and Biochemical Changes in Oyster, Crassostrea gigas: a model study with fluoranthene (참굴에서의 Polycyclic Aromatic Hydrocarbons의 축정성과 생화학적 변화I: Fluoranthene을 model 물질로 한 연구)

  • 서영호;정의영;김강전;임완수;김희연;류동기;최선남;황인영;김정상
    • The Korean Journal of Malacology
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 1998
  • 참굴에 다환성방향족탄화수소(PAHs)의 축적성과 이 물질들이 미치는 독성을 평가하기 위해 해양환경에서 빈번히 검출되는 PAHs 중의 하나인 fluoranthene을 사용한 모델연구를 수행하였다. Fluoranthene을 0.01-1ppm의 농도로 2주간 참굴에 노출시켰을 때 참굴 조직내의 fluoranthene의 농도는 노출기간 및 노출농도에 비례하여 최고 40-70배까지 증가하였다. 소화맹낭과 폐각근의 지질 과산화물가는 노출기간 및 노출농도에 관련하여 현저히 증가하였으며 수용성단백질의 함량은 노출기간이 길어짐에 따라 서서히 감소하였다. 그러나 glycogen 함량, nucleoside/nucleotide, DNA 및 RNA 함량은 변화하지 않았다. 이 결과로 fluoranthene은 굴의 조직내로 원활하게 축적함을 확인하였다. 또한 과산화지질의 함량은 fluoranthene에의 오염에 대해 신속히 반응하는 지표의 하나로 추정되며 수용성단백질의 감소도 비록 시간적으로 다소 둔감하기는 하나 또 다른 지표가 될 수 있을 것으로 사료된다.

  • PDF