• Title/Summary/Keyword: Biocompatible Polymer

Search Result 116, Processing Time 0.038 seconds

Thermoresponsive Graft Copolymers of Hyaluronic Acid (히알루론산의 온도감응성 그래프트 공중합체)

  • Choi, So-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.223-227
    • /
    • 2011
  • Stimuli-responsive polymers have been investigated as the materials playing the critical roles in various applications. Thermoresponsive graft copolymers, poly (N-isopropylacrylamide)-g-hyaluronic acid (PNIPAAm-g-HA) and elastin-like peptide-g-hyaluronic acid (ELP-g-HA), were synthesized by coupling carboxylic polymers (PNIPAAm-COOH or ELP) to biocompatible HA through amide linkages. Thermoresponsive behavior was observed in both the copolymers, and the results of turbidity measurement were consistent with the results of rheological examination. Among the two copolymers, the ELP graft copolymer shows less cooperative LCST transition than the PNIPAAm case. As the content of graft chains of PNIPAAm and ELP increases, viscosity increases, and the increase was larger in PNIPAAm case at a graft content. These results shows us that the introduction of grafts provides thermosensitivity to biocompatible HA, whose characteristics can be engineered.

Characteristics and Drug Release Control of Crosslinked Poloxamer Hydrogel (가교 폴록사머 하이드로겔 물성 및 약물 조절 방출)

  • Byun, Eun-Jung;Lee, Seung-Jin;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.201-205
    • /
    • 1996
  • Poloxamer, block copolymers of ethylene oxide and propylene oxide was crosslinked by diisocyanates and triisocyanates to form water-swellable, physically strong, rubber-like elastic, high biocompatible polyurethanes. The isocyanate-hydroxyl stoichiometry was kept 1:1, but the crosslinking density was varied. The variations examined were the ratio of diisocyanate and triisocyanate. The delivery of two drugs of different water solubilities from hydrogel matrices was studied. It appeared that the drug nature greatly influenced its release kinetics possibly due to drug-polymer interactions. The release profiles, however, could be modified to a great extent by adjusting the polymer network structure Generally the high crosslinking density was required for prolonged drug delivery.

  • PDF

Rheological Properties of High Molecular Weight (HMW) Syndiotactic poly(vinyl alcohol) (PVA)/HMW Atactic PVA Blend Solutions (고분자량 교대배열 폴리비닐알코올/고분자량 혼성배열 폴리비닐알코올 블렌드 용액의 유변학적 특성)

  • Yeum, Jeong-Hyun;Ji, Byung-Chul;Lyoo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.74-75
    • /
    • 2003
  • Recently, people are gradually concerned about environmental issue, bionics, environmental-friendly or biocompatible materials. Poly(vinyl alcohol) (PVA) is suitable for these materials, because it is typically water-soluble polymer that have linear-flexible chains, a material of no toxicity for human, and biodegradable polymer[1]. One of the most effective factors that dominate the properties of PVAs is tacticity. (omitted)

  • PDF

Synthesis of ABA-type Block Copolymer of Trimethylene Carbonate and $\varepsilon$-caprolactone (Trimethylene Carbonate와 $\varepsilon$-caprolactone를 이용한 ABA 형태 공중합체 합성에 관한 연구)

  • Yong Tang Jia;Hak Yong Kim;Douk Rae Lee;Ding Bin;Narayan Bhattarai
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.341-344
    • /
    • 2001
  • Over the last 20 years, biodegradable materials in medical applications have been studied extensively. Among these materials, poly(ε-caprolactone) and poly(trimethylene carbonate)(PTMC) are attractive biopolymers to be used as biodegradable sutures, artificial skin, drug release system. It was known that PCL is a nontoxic biocompatible semicrystalline polymer with melting point of 63℃, and PTMC is an amorphous or little crystaline polymer. (omitted)

  • PDF

non-viral gene delivery mediated by chitosan and PEl: developement of a gene carrier with serum stability and reduced cytotoxicity

  • Kim, Mi-Na;Hyun, Min-Sang;Jiang, Ge;Chung, Kyeong-Soo;Yeom, Young-Il
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.277.1-277.1
    • /
    • 2002
  • The purpose of this study was to develop PEl-based gene carriers with optimal serum stability and reduced cytotoxicity. PEl is an efficient gene transfer agent with the ability of DNA condensation and endosome escape: however; use of the polymer in vivo is hampered by signigicant reduction in transfection activity by the presence of serum. Chitosan is a non-toxic. biodegradable and biocompatible polymer with hydrophilic functional groups so it may provide a physical stability against challenge by serum proteins. (omitted)

  • PDF

Synthesis and Characterization of Biocompatible and Biodegradable Polyesters (II):Crystallization and Biodegradation of Poly (1,4-butanediol succinate) (생체적합성과 생분해성을 갖는 폴리에스테르 중합체의 합성과 특성에 관한 연구(II) : Poly(1, 4-butanediol succinate)의 결정화 및 생분해성)

  • 송대경;성정석
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • Biodegradable poly (I ,4-butanediol succinate) (PBS) was synthesized from 1,4-butanediol and succinic anhydride. The glass transition temperature of poly (I, 4-butanediol succinate) was revealed at $73^{\circ}C$. The crystallization and cold crystallization of the polymers were investigated as a function of holding time in melt state, cooling rate. reheating, and molecular weight. Chain scission and/or cmsslinking did not occur in the melt state at var.ious holding times. Slower scanning rate can allow more times for nucleation, rearrangement, and packing of the polymer chain, so the onset temperature of crystallization from the melt was increased. PBS crystallized from the melt was found to have spherulitic structure. The degradation behavior of PBS was studied under basic conditions and with microorganisms using the modified ASTM method. In the basic solution. PBS lost up to 85% of its mass within two days. Based upon visual observation, the crystalline structure of films composed of larger molecular weight polymers retained their crystallinity longer than similar structures in low molecular weight samples.

  • PDF

Synthesis and Polymerization of Methacryloyl-PEG-Sulfonic Acid as a Functional Macromer for Biocompatible Polymeric Surfaces

  • Kim, Jun-Guk;Sim, Sang-Jun;Kim, Ji-Heung;Kim, Soo-Hyun;Kim, Young-Ha
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • Poly(ethylene glycol)s (PEGs) are unique in their material properties, such as biocompatibility, non-toxicity, and water-solublizing ability, which are extremely useful for a variety of biomedical applications. In addition, a variety of functional PEGs with specific functionality at one or both chain ends have been synthesized for many specialized applications. Surface modifications using PEG have been demonstrated to decrease protein adsorption and platelet or cell adhesion on biomaterials. Furthermore, PEGs having anionic sulfonate terminal units have been proven to enhance the blood compatibility of materials, which has been demonstrated by the negative cilia concept. The preparation of telechelic PEGs having a sulfonic acid group at one end and a polymerizable methacryloyl group at the other is an interesting undertaking for providing macromers that can be used in various vinyl copolymerization and gel systems. In this paper, preliminary results on the synthesis and polymerization behavior of a novel PEG macromer is described with the aim of identifying a biocompatible material for applications in various blood-contacting devices.

Preparation and Properties of Biodegradable Hydrogels from Poly(2-hydroxyethyl aspartamide) and HMDI (HMDI 가교 폴리아스팔트아미드 수화젤의 제조 및 특성)

  • Kim Jeong Hoon;Sim Sang Jun;Lee Dong Hyun;Kim Dukjoon;Lee Youngkwan;Kim Ji-Heung
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.518-521
    • /
    • 2005
  • Biodegradable polymers and hydrogels have been increasingly applied in a variety of biomedical applications including current drug delivery system and tissue engineering field. ${\alpha},\;{\beta}-Poly$(N-2-hydroxyethyl-DL-aspart-amide), PHEA. is one of poly(amino acids) with hydroxyethyl pendants, which is hewn to be biodegradable and potentially biocompatible. So that, the utilization and various chemical modifications of PHEA have been attempted for useful biomedical applications. In this wort chemical gels based on PHEA were prepared by crosslinking with diisocyanate compound in DMF in the presence of catalyst. Here, the PHEA was prepared from polysuccinimde, the thermal polycondensation product of aspartic acid, via ring-opening reaction with ethanolamine. The preparation of gels and their swelling behavior, depending on the different medium and pH, were investigated. Also the morphology by SEM and simple hydrolytic degradation were observed.

Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) (폴리아스팔트아미드와 폴리(비닐 피롤리돈)의 상용블렌드 및 Semi-IPN 젤 제조)

  • Meng, Fan;Jeon, Young-Sil;Chung, Dong-June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.617-621
    • /
    • 2012
  • PHEAs [${\alpha}$,${\beta}$-poly(2-hydroxyethyl-DL-aspartamides)], a class of poly(amino acid), have been widely studied as biodegradable and biocompatible polymers for potential biomedical and pharmaceutical applications. In this study, we investigated a homogeneous blend of PHEA with poly(N-vinyl pyrrolidone) (PNVP) and its semi-IPN (semi-interpenetrating polymer network) gels. Blend films were prepared by a solution casting method. The resulting blends were totally transparent over the whole composition ranges and the single $T_g$, changing monotonously with composition, was observed by DSC to confirm the miscibility between these two polymers. FTIR was used to discuss the possible hydrogen-bonding interaction between polymers. In addition, semi-IPN type gels were prepared by chemical crosslinking of PHEA/PNVP blend solution using hexamethylene diisocyanate (HMDI) as a crosslinking reagent. The prepared gel was characterized by their swelling property and morphology.

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF