• Title/Summary/Keyword: Biochemical response

Search Result 335, Processing Time 0.025 seconds

Physiological Function of Isoflavones and Their Genetic and Environmental Variations in Soybean (콩 Isoflavone의 생리활성 기능과 함량 변이)

  • Kim Yong-Ho;Kim Seok-Dong;Hong Eun-Hi;Ahn Wan-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.25-45
    • /
    • 1996
  • Soyfoods have potential roles in the prevention and treatment of chronic diseases, most notably cancer, osteoporosis, and heart disease. There is evidence that carcinogenesis are supressed by isolated soybean derived products in vivo such as a protease inhibitor, phytic acid, saponins and isoflavones. It is believed that supplementation of human diets with soybean products markedly reduces human cancer mortality rates. Especially, recent papers recognize the potential benefit of soybean isoflavone components for reducing the risk of various cancers. Isoflavones exhibit a multitude of medicinal effects that influence cell growth and regulation, which may have potential value in the prevention and treatment of cancer. In addition to potential biological effects, soybean isoflavones have the important physiological functions such as the induction of Bradyrizobium japonicum nod genes and the responses of soybean tissues to infection by Phytophthora megasperma as well as biochemical activities such as antifungal and antibacterial actions. Genistin, daidzin, glycitin and their aglycone (genistein, daidzein, glycitein) are the principal isoflavones found in soybean. Malonyl and acetyl forms have also been detected but they are thermally unstable and are usually transformed during the processing in glucoside form. Most soy products, with the exception of soy sauce, alcohol-extracted soy protein concentrate, and soy protein isolate, have total isoflavone concentrations similar to those in the whole soybean. Soybean-containing diets inhibit mammary tumorigenesis in animal models of breast cancer, therefore, it is possible that dietary isoflavones are an important factor accounting for the lower incidence and mortality from breast cancer. Of the total soybean seed isoflavones, $80\~90\%$ were located in cotyledons, with the remainder in the hypocotyls. The hypocotyls had a higher concentrations of isoflavones on a weight basis compared with cotyledons. Isoflavone contents were influenced by genetics, crop years, and growth locations. The effect of crop year had a greater impact on the isoflavone contents than that of location. The climate condition might be the attribution factor to variation in isoflavone contents. Also, while the isoflavone content of cotyledons exhibited large variations in response to high temperature during seed development, hypocotyls showed high concentration in isoflavone content. So, it is concluded that one of the factors affecting isoflavone content in soybean seeds is temperature during seed development. High temperature, especially in maturity stage, causes lower isoflavone content in soybean seed. It is also suggested that there may exist a different mechanism to maintain isoflavone contents between cotyledon and seed hypocotyls. In a conclusion, soy foods may be able to have a significant beneficial impact on public health.

  • PDF

Study on the histomorphometry of guided bone regeneration using automated image analysis system (자동 영상분석 계기를 이용한 골 유도재생능력의 분석에 관한 조직계측학적 연구)

  • Kim, T.I.;Ku, Y.;Rhyu, I.C.;Chung, C.P.;Han, S.B.;Choi, S.M.;Son, S.H.
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.771-778
    • /
    • 1996
  • The assessment of alveolar bone changes on dental radiographs to indicate progression of periodontal diseases or healing response to therapy is routine procedure. However, the diagnostic accuracy in detecting small alveolar bone changes is very limited. Recently, guided bone regeneration therapy is popular, but the quantification of new bone is somewhat difficult with conventional evaluation method. To quantificate the amount of new bone, various evaluating methods have been introduced including histomorphometry, radiomorphometry, biochemical analysis, X-ray probe microanalysis, scanning electron microscope backscatter method. In this study, guided bone regeneration using resorbable membrane with & without PDGF-BB is quatificated through histomorphmetry to evaluate the efficacy of histomorphometric analysis. 4 beagle dogs and 8 Sprague-Dawley rats were selected as experimental animals. In beagle dog experiment, $4{\times}4mm$ Class II defects were created in maxillary both second premolars, and biodegradable membrane containing PDGF-BB(experimental group) were covered over one defect, and same membrane without PDGF-BB(control group) were covered over the other defect. At 2 weeks, 5 weeks after surgery, each beagle dogs were sacrificed, and the tissues were treated by undecalcified fixation. In Sprague-Dawley rat experiment, 5mm round defect were created in temporal bone, the same membranes were covered on the defects. At 1 week, 2 weeks after surgery, each rats were sacrificed, and undecalcified fixation were taken. After grinding tissue specimen, we analyse them histomorphometrically using image analysis system. In beagle dog 2 weeks specimens, new bone formation area were $0.03123mm^2$ in experimental group,and $0.03012mm^2$ in control group. At 5 weeks specimens, $0.15324mm^2$ in experimental group, and $0.09123mm^2$ in control group. In Sprague-Dawley rat specimens, new bone fomation area were $0.20448mm^2$ in 1 week experimental group, $0.03604mm^2$ in 1 week control group. At 2 weeks specimens, $0.46349mm^2$ in experimental group, $0.17741mm^2$ in control group. The results indicated that histomorphometric analysis of new bone formation using image analysis system is very effective quantification method to evaluate the efficacy of treatment modalities.

  • PDF

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Gene Expression Profiling in Diethylnitrosamine Treated Mouse Liver: From Pathological Data to Microarray Analysis (Diethylnitrosamine 처리 후 병리학적 결과를 기초로 한 마우스 간에서의 유전자 발현 분석)

  • Kim, Ji-Young;Yoon, Seok-Joo;Park, Han-Jin;Kim, Yong-Bum;Cho, Jae-Woo;Koh, Woo-Suk;Lee, Michael
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • Diethylnitrosamine (DEN) is a nitrosamine compound that can induce a variety of liver lesions including hepatic carcinoma, forming DNA-carcinogen adducts. In the present study, microarray analyses were performed with Affymetrix Murine Genome 430A Array in order to identify the gene-expression profiles for DEN and to provide valuable information for the evaluation of potential hepatotoxicity. C57BL/6NCrj mice were orally administered once with DEN at doses of 0, 3, 7 and 20 mg/kg. Liver from each animal was removed 2, 4, 8 and 24 hrs after the administration. The histopathological analysis and serum biochemical analysis showed no significant difference in DEN-treated groups compared to control group. Conversely, the principal component analysis (PCA) profiles demonstrated that a specific normal gene expression profile in control groups differed clearly from the expression profiles of DEN-treated groups. Within groups, a little variance was found between individuals. Student's t-test on the results obtained from triplicate hybridizations was performed to identify those genes with statistically significant changes in the expression. Statistical analysis revealed that 11 genes were significantly downregulated and 28 genes were upregulated in all three animals after 2 h treatment at 20 mg/kg. The upregulated group included genes encoding Gdf15, JunD1, and Mdm2, while the genes including Sox6, Shmt2, and SIc6a6 were largely down regulated. Hierarchical clustering of gene expression also allowed the identification of functionally related clusters that encode proteins related to metabolism, and MAPK signaling pathway. Taken together, this study suggests that match with a toxicant signature can assign a putative mechanism of action to the test compound if is established a database containing response patterns to various toxic compounds.

Inhibitory Effects of Immediate-Type Allergic Reaction of Okbyungpoongsan-Gami by Anal Therapy (항장효법에 의한 옥병풍산가미의 즉각형 알레르기 반응 억제 효과)

  • Cho Jeong Yeon;Moon Gu;Moon Suk Jae;Won Jin Hee;You Kyoung Tae;Lee Jong Deok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.239-244
    • /
    • 2002
  • Okbyungpoongsan-Gami (OG) has been used for the treatment of excessive sweating with general weakness and allergic rhinitis recently. Anal therapy is another way of taking Oriental medicine. It is an important pathway but not available in common clinical situation. This experiment was performed in order to study the inhibitory effect of immediate-type allergic reaction of OG by anal therapy. In addition, the experiment was practised by 1 H-NMR spectroscopy to examine molecular structure of OG. The results were obtained as follows : OG concentration-dependently inhibited compound 48/80- induced immediate type systemic allergic reaction with concentrations of 0.01-1.0g/kg by anal administration 1 h before injection of compound 48/80. OG also concentration-dependently inhibited compound 48/80- induced ear swelling response with concentrations of 0.01-1g/kg by anal administration 1h before injection of compound 48/80. OG also inhibited the passive cutaneous anaphylaxis activated by anti-dinitrophenyl (DNP) IgE antibody concentration- dependently at concentrations ranging from 0.01 to 1g/kg. When OG was pretreated at concentrations ranging from 0.01 to 1g/ℓ, the histamine release from the rat peritoneal mast cells induced by compound 48/80 was reduced in a concentration-dependent manner. OG (0.1-1g/ℓ) had a significant inhibitory effect on histamine release from IgE-induced activated mast cells. OG is seen to be a biochemical compound certainly by 1 H-NMR spectroscopy According to above results, anal therapy of OG may be beneficial in the treatment of systemic and local immediate-type allergic reactions by inhibition of histamine release from mast cells.

Bacterial Stripe of Proso Millet Caused by Acidovorax avenae subsp. avenae in Korea (Acidovorax avenae subsp. avenae에 의한 기장 세균성줄무늬병)

  • Yoon, Young-Nam;Jung, Ji-Hun;Lee, Yeong-Hoon;Kim, Hyun-Joo;Bae, Soon-Do;Choi, Byeong-Ryeol;Nam, Min-Hee;Lee, Young-Kee
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.236-239
    • /
    • 2012
  • In July, 2009, proso millet (Panicum miliaceum), which showing the bacterial brown stripes on leaf sheaths, was collected in Miryang in Korea. Symptoms were systemic brown necrotic stripe lesions on the leaf sheaths and stems, and these symptoms were found in the entire field. The causal agent isolated from symptomatic plants was identified as an Acidovorax avenae subsp. avenae, based on its biochemical and physiological characteristics and also confirmed by the Biolog data and 16S rRNA gene sequence analysis. Also it caused hypersensitive response (HR) when it was inoculated onto the tobacco and tomato. It caused similar symptoms when inoculated onto proso millet. This is the first report of A. avenae subsp. avenae, the causal agent of bacterial brown stripe of the proso millet in Korea.

Comparison for immunophysiological responses of Jeju and Thoroughbred horses after exercise

  • Khummuang, Saichit;Lee, Hyo Gun;Joo, Sang Seok;Park, Jeong-Woong;Choi, Jae-Young;Oh, Jin Hyeog;Kim, Kyoung Hwan;Youn, Hyun-Hee;Kim, Myunghoo;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.424-435
    • /
    • 2020
  • Objective: The study was conducted to investigate variations in the immunophysiological responses to exercise-induced stress in Jeju and Thoroughbred horses. Methods: Blood samples were collected from the jugular veins of adult Jeju (n = 5) and Thoroughbred (n = 5) horses before and after 30 min of exercise. The hematological, biochemical, and immunological profiles of the blood samples were analyzed. Blood smears were stained and observed under a microscope. The concentration of cell-free (cf) DNA in the plasma was determined using real time polymerase chain reaction (PCR). Peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells were separated using Polymorphprep, and the expression of various stress-related and chemokine receptor genes was measured using reverse transcriptase (RT) and real-time PCR. Results: After exercise, Jeju and Thoroughbred horses displayed stress responses with significantly increased rectal temperatures, cortisol levels, and muscle catabolism-associated metabolites. Red blood cell indices were significantly higher in Thoroughbred horses than in Jeju horses after exercise. In addition, exercise-induced stress triggered the formation of neutrophil extracellular traps (NETs) and reduced platelet counts in Jeju horses but not in Thoroughbred horses. Heat shock protein 72 and heat shock protein family A (Hsp70) member 6 expression is rapidly modulated in response to exercise-induced stress in the PBMCs of Jeju horses. The expression of CXC chemokine receptor 4 in PBMCs was higher in Thoroughbred horses than in Jeju horses after exercise. Conclusion: In summary, the different immunophysiological responses of Jeju and Thoroughbred horses explain the differences in the physiological and anatomical properties of the two breeds. The physiology of Thoroughbred horses makes them suitable for racing as they are less sensitive to exercise-induced stress compared to that of Jeju horses. This study provides a basis for investigating the link between exercise-induced stresses and the physiological alteration of horses. Hence, our findings show that some of assessed parameters could be used to determine the endurance performance of horses.

Inflammatory Cytokines and Dietary Factors in Korean Elderly with Chronic Disease (만성 질환 노인에서의 면역 성분 양상과 식이예방인자)

  • Park Hee-Jung;Hwang Yu-Jin;Kim Wha-Young
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.372-380
    • /
    • 2006
  • The purpose of this study was to investigate the association between inflammatory cytokines and chronic disease status in Korean elderly. The subjects were 248 elderly people aged over 65 years recruited from Health Center in Seoul. The subjects were classified into 3 groups based on their disease (diabetes, hypertension, and hyperlipidemia) status: subjects with one diagnosed disease of diabetes, hypertension, and hyperlipidemia fall into singular group (n=89), subjects with more than 2 disease into multiple group (n=39), and those with free of the diseases into normal (n=122). Anthropometric and biochemical characteristics, and dietary intakes were assessed. Dietary intakes were surveyed by 24-recall method. The means of IL-2, IL-6, MCP-1 and C3 were not differ among 3 groups. However, when subjects classified into tertiles of IL-6, MCP-1, TNF-$\alpha$ and C3 and frequencies of each fertile were compared, the multiple group showed significantly lower frequencies in lowest fertile than normal group (p<0.05), suggesting higher tendency of inflammatory responses. For hematological values, blood pressure, triglycerides, fasting blood glucose levels were highest in multiple group (p<0.05) compared to other 2 groups. BMI, body fat(kg), and triceps skinfold thickness were also significantly higher in multiple group than in 2 other groups(p<0.05). Moreover, the concentrations of IL-2, IL-6 and C3 were significantly correlated with hematologic values of fasting blood glucose, total cholesterol, LDL-cholesterol, and triglycerides or obesity factors such as triceps skinfold thickness, BMI, and body fat(%). Among singular and multiple group, the subjects with higher intakes for vitamins A, C, and E showed the higher level of IL-2 and the lower level of MCP-1, and C3. In conclusion, blood concentrations of triglycerides and proinflammatory cytokines, blood pressure, obesity parameters (BMI, body fat, triceps skinfold thickness) were higher in multiple group than in normal, but this result strongly suggest that the increasement of the vitamin A, C, and E intakes would modify the cytokine levels to reduce the inflammatory response in the elderly people with chronic diseases.

THE EFFECT OF EXOGENOUS ELECTRIC CURRENTS ON CYCLIC NUCLEOTIDES IN FELINE ALVEOLAR BONE (외인성전류가 고양이 치조골의 cyclic nucleotides에 미치는 영향에 관한 연구)

  • Kim, Young-Bok;Lee, Jong-Heun;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.14 no.2
    • /
    • pp.187-202
    • /
    • 1984
  • There are evidences that exogenous electric currents are capable of enhancing bone formation and resolution, and that the conversion of the bioelectric response to biochemical activity provides the directional component of orthodontic tooth movement. In addition, evidence has implicated cyclic nucleotides in alveolar bone cellular activation mechanism during orthodontic tooth movement. In view of these evidences, this study was performed to investigate the effects of exogenous electric currents on cyclic nuclotide levels in feline alveolar bone and the possible clinical application of electric currents as an additional orthodontic tool. In the first study, three groups of three adult cats were subjected to application of a constant direct current of $10{\pm}2$ microamperes to gingival tissue near maxillary canine noninvasively for 1, 3, and 7 days respectively. In the second study, three groups of three adult cats each were treated by an electric-orthodontic procedure for 1, 3, and 7 days respectively. The left maxillary (control) canine received an orthodontic force of 80gm alone at time of initiation, while the right maxillary (experimental) canine received combined force-electric stimulation (80gm of force and $10{\pm}2$ microamperes of a constant D.C. currents). Alveola, bone samples were obtain from the mesial (tension and/or cathode) and the distal (compression and/or anode) sites surrounding maxillary canines as well as from contralateral control sites. The samples were extracted, boiled, homogenized, and the supernatants were assayed for cyclic nucleotides (cAMP, cGMP) by a radioimmunoassay method. And also the amount of tooth movement was measured in the second study. On the basis of this study, the following conclusions can be drawn: 1. The fluctuation pattern of cyclic nucleotide levels in alveolar bone treated by exogenous electric currents was similar to that treated by orthodontic force. 2. The cAMP levels in alveolar bone of electrically treated teeth significantly elevated above the control values. And of electrically treated teeth, the values of the anode sites were higher than those of the cathode sites. 9. The cGMP levels in alveolar bone of electrically treated teeth elevated above the control values at the initiation phase of treatment, but dropped below the control values at time of termination. And of electrically treated teeth, the values of the cathode sites were higher than those of the anode sites. 4. The rate of tooth movement in teeth . treated by force-electric combination increased with the length of treatment as compared to that treated by mechanical force alone.

  • PDF

OSTEOGENIC ACTIVITY OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS IN A THREE DIMENSIONAL POLYDIOXANONE/PLURONIC F127 SCAFFOLD (Polydioxanone/pluronic F127 담체에 유입된 골막기원세포의 조골활성)

  • Lee, Jin-Ho;Oh, Se-Heang;Park, Bong-Wook;Hah, Young-Sool;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.6
    • /
    • pp.478-484
    • /
    • 2009
  • Three-dimensional porous scaffolds play an important role in tissue engineering strategies. They provide a void volume in which vascularization, new tissue formation, and remodeling can occur. Like any grafted materials, the ideal scaffold for bone tissue engineering should be biocompatible without causing an inflammatory response. It should also possess biodegradability, which provides a suitable three-dimensional environment for the cell function together with the capacity for gradual resorption and replacement by host bone tissue. Various scaffolds have already been developed for bone tissue engineering applications, including naturally derived materials, bioceramics, and synthetic polymers. The advantages of biodegradable synthetic polymers include the ability to tailor specific functions. The purpose of this study was to examine the osteogenic activity of periosteal-derived cells in a polydioxanone/pluronic F127 scaffold. Periosteal-derived cells were successfully differentiated into osteoblasts in the polydioxanone/pluronic F127 scaffold. ALP activity showed its peak level at 2 weeks of culture, followed by decreased activity during the culture period. Similar to biochemical data, the level of ALP mRNA in the periosteal-derived cells was also largely elevated at 2 weeks of culture. The level of osteocalcin mRNA was gradually increased during entire culture period. Calcium content was detactable at 1 week and increased in a time-dependent manner up to the entire duration of culture. Our results suggest that polydioxanone/pluronic F127 could be a suitable scaffold of periosteal-derived cells for bone tissue engineering.