• 제목/요약/키워드: Biochemical Oxygen Demand (BOD)

검색결과 183건 처리시간 0.033초

수중(水中) 수은(水銀) 및 鉛(연)의 농도(濃度)가 BOD값에 미치는 영향(影響)에 관(關)하여 (Effect of Mercury and Lead on the Biochemical Oxygen Demand (BOD))

  • 문재동
    • Journal of Preventive Medicine and Public Health
    • /
    • 제17권1호
    • /
    • pp.217-221
    • /
    • 1984
  • In order to estimate interfering effects of mercury and lead on biochemical oxygen demand (BOD), BOD in 18 effluent samples were measured under three different concentrations of mercury and lead. The results obtained were as follows: 1. Biochemical oxygen demand(BOD) was decreased under the presence of mercury and lead, with parallel correlation of mercury concentration. 2. High correlations were noted between original BOD concentration and decreasing amount of BOD when concentrations of mercury or lead were increased. 3. When the lead concentration was high, the close correlation was observed between total organic carbon(TOC) and decreasing amount of BOD. 4. There was a negative correlation between TOC/BOD ratio and decreasing amount of BOD when the mercury concentrations were high.

  • PDF

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

축산 폐수의 생물화학적 산소요구량 자동 측정 방법에 관한 연구 (A Study on the On-line Measurement of Biochemical Oxygen Demand of livestock Wastewater)

  • 김형모;김진경;신관석;김준형;정재칠;김태진
    • KSBB Journal
    • /
    • 제23권4호
    • /
    • pp.317-322
    • /
    • 2008
  • 본 연구를 통하여 자체 구동형 모터를 갖는 BOD 센서를 개발하였으며, 6,000초 이상 측정한 결과 안정적인 측정이 가능함을 확인하였다. 응답시간은 30초 이내, 재현성은 1 ppm 이내, 선형성은 99%의 우수한 성능을 갖는 BOD 센서를 개발하였다. 최대 산소소모속도 (Maximum Oxygen Uptake Rate, $OUR_{max}$)와 $BOD_5$ 상관관계는 $BOD_5$ (ppm)=-2,490+33,889 ($OUR_{max}$)로서, 95.6%의 우수한 선형성을 보였다. 자체구동형 BOD 센서를 이용하여 시료의 전처리부터 BOD의 측정까지 자동으로 제어 및 측정되는 시스템을 구성하였다. 본 연구를 통하여 최대 산소소모속도 ($OUR_{max}$)와 $BOD_5$ 상관관계를 구한 후 수분내에 $BOD_5$ 값을 예측할 수 있었다.

하수처리장 유출수의 NOD를 고려한 BOD 측정에 관한 연구 (Effect of NOD on BOD Test for the Effluents of Biological Treatment Plant)

  • 장세주;이성호;박해식;박청길
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.188-192
    • /
    • 2007
  • The biochemical oxygen demand (BOD) test is widely used to determine the pollution strength of water, to evaluate the performance of wastewater treatment plants and to judge compliance with discharge permits. However, nitrification is a cause of significant errors in measuring BOD, particularly when a large population of nitrifying organisms is existing in water such as effluents from biological treatment plants. In order to investigate the amount of nitrogenous oxygen demand (NOD), BOD with and without inhibitor was measured as samples in the biological treatment plants. About 81% of effluent BOD from the biological treatment plant used in this experiment was comprised of NOD. In the case of influents, the NOD accounted for about 9% of BOD. The inhibited 5-day BOD (Carbonaceous BOD) test must be considered in evaluating the performance of wastewater treatment plant and judging compliance with discharge permit limitations.

혼합 Bacillus sp. BOD 센서 (Mixed Bacillus sp. BOD sensor)

  • 강태영;박현주;박경량;김진두;차근식;남학현
    • 분석과학
    • /
    • 제20권1호
    • /
    • pp.1-9
    • /
    • 2007
  • 용존산소(dissolved oxygen; DO) 전극에 미생물 막과 보호막을 장착하여 BOD(biochemical oxygen demand) 센서를 제작하였다. 토양과 물 그리고 활성슬러지에서 분리한 다양한 미생물들을 BOD 센서에 적용하여 그 감응특성을 조사하여 빠른 산소 호흡력과 회복력을 나타내는 미생물로 Bacillus 종인 HN24와 HN93을 선별하였다. 최종적으로 최적화한 BOD 센서는 Bacillus subtilis, Bacillus sp. HN24 그리고 Bacillus sp. HN93을 혼합한 미생물 막과 DO 전극의 기체투과막을 silicon rubber(SR) 막으로 사용한 것이며, 측정조건으로 완충용액에 50% 산소(질소와의 비율)를 주입하여 감응특성을 향상시켰다. 본 실험에서 제작된 BOD 센서는 100 mg/L BOD 농도 이상까지 우수한 직선감응성($r^2=0.9986$)을 나타냈다.

Rhodospirillum rubrum N-1을 이용한 양돈폐수의 악취제거 (Deodorization of Swine Wastewater by Rhodospirillum rubrum N-1)

  • 최경민;김종승
    • 유기물자원화
    • /
    • 제6권1호
    • /
    • pp.13-20
    • /
    • 1998
  • 고농도 유기폐수인 양돈 폐수에 광합성 미생물(Rhodospirillum rubrum N-1)을 접종하고 여기에 공기를 160 mL/min 주입함으로써 양돈분뇨의 악취제거 효과를 조사하였다. 7일 동안 1일 간격으로 이화학적 변화를 검토하였다. 검토 결과 Biochemical Oxygen Demand (BOD) 20,000ppm인 양돈폐수의 경우 호기적 조건과, Rhodospirillum rubrum N-1 접종한 경우 volatile fatty acids(VFAs)의 제거율이 87.0%였으며, BOD제거율 54.6%, $PO_4-P$는 54.5%의 감소를 보였고, PH, $NH_3$ 등은 증가하는 경향을 나타내었다. T-N, T-P, $NO_3-N$, $NO_2-N$, $H_2S-N$, mercaptane 등은 별다른 증감율을 보이지 않고 일정하게 나타났다.

  • PDF

On-Line Monitoring of Low Biochemical Oxygen Demand Through Continuous Operation of a Mediator-Less Microbial Fuel Cell

  • MOON, HYUN-SOO;CHANG, IN-SEO;JANG, JAE-KYUNG;KIM, KYUNG-SHIK;LEE, JI-YOUNG;LOVITT, ROBERT W.;KIM, BYUNG-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.192-196
    • /
    • 2005
  • Abstract Oligotrophic microbial fuel cells (MFCs) were tested for the continuous monitoring of low biochemical oxygen demand (BOD) by using artificial wastewater, containing glucose and glutamate, as check solution. Ten times diluted trace mineral solution was used to minimize the background current level, which is generated from the oxidation of nitrilotriacetate used as a chelating agent. The feeding rate of 0.53 ml/min could increase the sensitivity from 0.16 to 0.43 ${\mu}$A/(mg BOD/l) at 0.15 ml/min. The dynamic linear range of the calibration curve was between 2.0 and 10.0 mg BOD/l, and the response time to the change of 2 mg BOD/l was about 60 min. The current signal from an oligotroph-type MFCs increased with the increase in salts concentration, and the salt effect could be eliminated by 50 mM phosphate buffer.

Multi-Biosensor를 이용한 축산폐수의 생물화학적 산소요구량 실시간 측정방법 연구 (On-Line Measurement of Biochemical Oxygen Demand of livestock Wastewater by Multi-Biosensor System)

  • 김진경;김태진
    • KSBB Journal
    • /
    • 제21권4호
    • /
    • pp.241-247
    • /
    • 2006
  • 용존산소 센서 및 시스템에서 손실되는 산소량을 보정하기 위해 멸균처리 기법을 도입하였다. 멸균처리 시료의 DO 거동과 비멸균처리 시료의 DO 거동차(${\Delta}$DO)는 시스템의 영향과 무관하게 폐수 자체의 순수한 미생물만이 소모하는 산소변화량을 구하였다. 용존산소 센서로 축산폐수의 시간에 따른 DO거동(-d${\Delta}$DO/dt)을 측정하여 구한 폐수 자체의 미생물에 의한 산소소모속도는 0.00074mg $O_2/{\ell}{\cdot}sec$이었다. 축산폐수의 원액을 희석하여 다양한 BOD값을 갖도록 시료를 제조한 후 DO meter로 측정하여 구한 DO 변화량은 동일한 시료를 5일 BOD 측정방법인 Winkler Azide화 변법으로 구한 BOD값과 선형구간($30{\sim}60$분)에서 97.72%의 높은 상관 선형성을 보였다. 따라서 본 연구의 multi-biosensor 시스템은 축산폐수의 BOD를 짧은 시간에 정확하게 측정할 수 있는 가능성을 제시하였다.

Experimenting biochemical oxygen demand decay rates of Malaysian river water in a laboratory flume

  • Nuruzzaman, Md.;Al-Mamun, Abdullah;Salleh, Md. Noor Bin
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.99-106
    • /
    • 2018
  • Lack of information on the Biochemical Oxygen Demand (BOD) decay rates of river water under the tropical environment has triggered this study with an aim to fill the gap. Raw sewage, treated sewage, river water and tap water were mixed in different proportions to represent river water receiving varying amounts and types of wastewater and fed in a laboratory flume in batch mode. Water samples were recirculated in the flume for 30 h and BOD and Carbonaceous BOD (CBOD) concentrations were measured at least six times. Decay rates were obtained by fitting the measured data in the first order kinetic equation. After conducting 12 experiments, the range of BOD and CBOD decay rates were found to be 0.191 to 0.92 per day and 0.107 to 0.875 per day, respectively. Median decay rates were 0.344 and 0.258 per day for BOD and CBOD, respectively, which are slightly higher than the reported values in literatures. A relationship between CBOD decay rate and BOD decay rate is proposed as $k_{CBOD}=0.8642_{k_{BOD}}-0.0349$ where, $k_{CBOD}$ is CBOD decay rate and $k_{BOD}$ is BOD decay rate. The equation can be useful to extrapolate either of the decay rates when any of the rates is unknown.

BOD 測定에 影響을 미치는 重金屬이온에 關한 연구 (Study of the Influence of Heavy Metal Ions(Cu, Cr, Pb, Zn) on Biochemical Oxygen Demand)

  • Choi, Taek-Pyul;Yun, O-Sub
    • 한국환경보건학회지
    • /
    • 제9권2호
    • /
    • pp.75-81
    • /
    • 1983
  • The Biochemical Oxygen Demand(BOD) indicates that microbes are proliferating or that oxygen is being spent by breathing action when examining water under the same aerobic condition. In this research of the mesurement of BOD are the poisonous elements of heavy metal ions such as Cu-ion, Cr-ion, Pb-ion and Zn-ion. They exert an unfavorable influence in the analysis of BOD and research was performed to provide certain data of minimum negative influence by the poisonous matters. The results of the research confirm that heavy metal ion(Cu, Cr, Pb, Zn) do direct an influence upon the normal growth of aerobic microbes in actual tests of chemical analysis of portable water or sewage. The most critical concentration for a negative effect on lowering oxygen quantity and disturbing the aerobic mocrobes normal growth was found to be 0.01 mg/l. Therefore, test results are not valid if the heavy metal concentration is to or greater than 0.0mg/l, To improve comprehension through out the research the author uses the following abbreviations: 1. The Cu-ion is to be excluded before experimental analysis if it is over 0.01mg/l inorder to obtain a real value for the BOD. 2. The Cr-ion is to be excluded before experimental analysis if it is over 0.01mg/l in order to obtain a real value for the BOD. 3. The Pb-ion is to be excluded before experimental analysis if it is over 0.01mg/l in order to obtain a real value for the BOD. 4. The Zn-ion is to be excluded before experimental analysis if it is over 0.01mg/l in order to obtain a real value for the BOD.

  • PDF