Browse > Article

On-Line Monitoring of Low Biochemical Oxygen Demand Through Continuous Operation of a Mediator-Less Microbial Fuel Cell  

MOON, HYUN-SOO (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
CHANG, IN-SEO (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
JANG, JAE-KYUNG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
KIM, KYUNG-SHIK (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
LEE, JI-YOUNG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
LOVITT, ROBERT W. (Center for Complex Fluids Processing, Multidisplinary Nanotechnology Center, School of Engineering, University of Wales Swansea)
KIM, BYUNG-HONG (Water Environment and Remediation Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.1, 2005 , pp. 192-196 More about this Journal
Abstract
Abstract Oligotrophic microbial fuel cells (MFCs) were tested for the continuous monitoring of low biochemical oxygen demand (BOD) by using artificial wastewater, containing glucose and glutamate, as check solution. Ten times diluted trace mineral solution was used to minimize the background current level, which is generated from the oxidation of nitrilotriacetate used as a chelating agent. The feeding rate of 0.53 ml/min could increase the sensitivity from 0.16 to 0.43 ${\mu}$A/(mg BOD/l) at 0.15 ml/min. The dynamic linear range of the calibration curve was between 2.0 and 10.0 mg BOD/l, and the response time to the change of 2 mg BOD/l was about 60 min. The current signal from an oligotroph-type MFCs increased with the increase in salts concentration, and the salt effect could be eliminated by 50 mM phosphate buffer.
Keywords
Microbial fuel cell; biochemical oxygen demand; continuous monitoring; bioelectrochemistry;
Citations & Related Records

Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327- 334   DOI   ScienceOn
2 Kim, B. H., J. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545   DOI   ScienceOn
3 Kim, H. J., H. S. Park, M. S. Hyun, J. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152   DOI   ScienceOn
4 Liu, J. and B. Mattiasson. 2002. Microbial BOD sensors for wastewater analysis. Wat. Res. 36: 3786- 3802   DOI   ScienceOn
5 Moon, H., I. S. Chang, K. H. Kang, J. K. Jang, and B. H. Kim. 2004. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 26: 1717- 1721   DOI   ScienceOn
6 Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, J. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681   DOI   ScienceOn
7 Gunatilaka, A. and J. Dreher. 2003. Use of real-time data in environmental monitoring: Current practice. Wat. Sci. Tech. 47: 53-61
8 Buerk, D. G. 1993. Biosensors: Theory and Applications, pp. 1-18. Technomic, Lancaster, U.K
9 Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediator-less microbial fuel cell with graphite or platinum-coated graphite as the cathode. J. Microbiol. Biotechnol. 14: 324- 329
10 Chee, G. J., Y. Nomura, K. Ikebukuro, and I. Karube. 2000. Optical fiber biosensor for the determination of low biochemical oxygen demand. Biosens. Bioelectron. 15: 371-376   DOI   ScienceOn
11 Vanrolleghem, P. A. and D. S. Lee. 2003. On-line monitoring equipment for wastewater treatment processes: State of art. Wat. Sci. Tech. 47: 1- 34
12 Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 5: 640- 643   DOI   ScienceOn
13 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365- 367
14 Diekert, G. 1991. The acetogenic bacteria, pp. 517-533. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes. 2nd Ed. Springer-Verlag, New York, U.S.A
15 Karube, I., T. Matsunga, S. Mitsuda, and S. Suzuki. 1977. Microbial electrode BOD sensors. Biotechnol. Bioeng, 19: 1535-1547   DOI   ScienceOn
16 Yang, Z., H. Suzuki, S. Sasaki, and I. Karube. 1996. Disposable sensor for biochemical oxygen demand. Appl. Microbiol. Biotechnol. 46: 10- 14   DOI   ScienceOn
17 Chee, G. J., Y. Nomura, and I. Karube. 1999. Biosensor for the estimation of low biochemical oxygen demand. Anal. Chem. Acta 379: 185-191   DOI   ScienceOn
18 Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361   DOI   ScienceOn
19 Bourgeois, W., J. E. Burgess, and R. M. Stuetz. 2001. Online monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 76: 337- 348   DOI   ScienceOn
20 Enfors, S. O. and N. Molin. 1973. Biodegradation of nitrilotriacetate (NTA) by bacteria-I. Isolation of bacteria able to grow anaerobically with NTA as a sole carbon source. Wat. Res. 7: 881-888   DOI   ScienceOn
21 Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using a microbial fuel cell type biosensor Biosens. Bioelectron. 19: 607- 613   DOI   ScienceOn