• Title/Summary/Keyword: Bioactive treatment

Search Result 392, Processing Time 0.105 seconds

Effect of PLGA Scaffold Containing Demineralized Bone Solution for Articular Cartilage Tissue Engineering: In Vitro Test (조직공학적 연골재생을 위한 In Vitro 환경에서의 탈미네랄화 골분용액을 함유한 PLGA 지지체의 효과)

  • Ahn, Woo-Young;Kim, Hye-Lin;Song, Jeong-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.499-504
    • /
    • 2011
  • Articular cartilage has an intrinsic difficulty in recovering damages, which requires its tissue engineering treatment. Demineralized bone particle (DBP) contains various bioactive molecules. It is widely used biomaterials in the field of tissue engineering. We developed the synthetic/natural hybrid scaffolds with poly(lactide-co-glycolide) (PLGA) and solution of DBP. The chondrocytes were seeded on the PLGA-DBP scaffolds and MTT assay, morphological observation, biological assay for collagen, sGAG, and RT-PCR were performed to analyze the effect of the DBP on cell viability and extracellular matrix secretion. In SEM observation, we observed that PLGA-DBP scaffolds had uniform porosity. As MTT assay showed scaffolds containing DB solution had higher cell viability then only PLGA scaffolds. The PLGA-DBP scaffolds had better ECM production than PLGA scaffold. It was proven by the higher specific mRNA expression in the PLGA-DBP scaffold than that in PLGA scaffold. These results indicated that PLGA-DBP scaffolds might serve as potential cell delivery vehicles and structural bases for in vitro tissue engineered articular cartilage.

Characteristics of Mulberry Cultivar "Sangberry"(Morus alba L.) for Fruit Production (오디 생산용 뽕품종 "상베리"의 특성)

  • Sung, Gyoo Byung;Kim, Hyun-Bok;Kang, Pil Don;Kim, Ki Young;Ji, Sang Duk
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • We bred a mulberry cultivar named Sangberry, through local adaptability test, which is under registration as a new cultivar for fruit production. Local adaptability test had been carried out at four places(Suwon, Kongju, Jangseong and Sangju) for six years from 2005. This is tetraploidy variety belonging to(Morus alba L.) made by colchicine treatment on growing point of winter buds. Sangberry was high yielding cultivar in fruit productivity by 70% compared to control cultivar "Chungilppong(Morus alba L.)" for four years. Although Sangberry was a little lower in sugar content of mulberry fruits, it contains more bioactive materials like C3G, rutin and amino acids than Chungilppong. It is adaptable to every where except the places where cold damage and sclerotic disease happen frequently.

Recent Research Trends of Cryopreservation Technology Based on Microalgae Chlorophyta (미세조류 동결보존 기술 개발의 최근 연구 동향)

  • Yim, Jun-Ho;Seo, Yong Bae;Kim, Seon Min;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.960-968
    • /
    • 2021
  • Since microalgae research started on late 18 century, they have been recognized as one of the most important bioresources used in bioindustry. Owing to the large efforts paid to industrial application of this microorganisms, their importance on food/feed and bioactive compounds has been further extending into the environmental research areas including alternative energy resources, mitigation of the carbon emission, and waste-water treatment. However, despite the importance on their industrial application, the fundamental research field related to the long-term preservation of microalgae culture has not received much attention. However, a less labor intensive and cost-efficient preservation technology enabling biologically active and stable microalgae-culture provides a key success factor in the biotechnological application. Therefore, this study investigated various cutting-edge microalgae cryopreservation technologies currently developed so far, mainly targeting Chlorophyta, which occupies the largest taxon in the classification system of microalgae. In addition, for the development of successful cryopreservation technique, the key factors such as temperature control effect and preservative effect during cryopreservation of microalgae culture were investigated. In addition, the problems with current preservation technology that is being used in Korean domestic biological resource banks and the international microalgal resource banks are described. According to our investigation, currently no standard method for long-term preservation of microalgae is available due to their various morphological and physiological characteristics. To overcome such issues, much more efforts on fundamental research area on the identification of specific biomarker used for microalgae taxonomical classification and further systemic approaches based on strain-specific cryopreservation methods needed.

Anti-proliferative and Pro-apoptotic Activities of Nelumbo nucifera and Neferine in Human Colorectal HCT116 Cells (연 및 neferine의 암세포 항 성장 및 세포사멸 활성)

  • Kim, Yong-Hyun;Lee, Eun-Joo;Chung, Chung-Wook;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1080-1085
    • /
    • 2019
  • Nelumbo nucifera, also known as sacred lotus, has mainly been used as a food throughout the Asian countries. In the present study, we prepared the ethanol extracts from leaf (NL), seed (NS), and seedpod (NSP) of Nelumbo nucifera and investigated their anti-proliferative and pro-apoptotic activities in human colorectal cancer HCT116 cells. NL, NS, and NSP decreased cell viabilities in a dose-dependent manner. All extracts increased the expression of non-steroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) as well as NAG-1 protein. And also, NL induced the expression of pro-apoptotic NAG-1 protein and PARP cleavage in a time-dependent manner. The PARP cleavage induced by NL treatment, was recovered in part by the transfection of NAG-1 siRNA. We also evaluated the effects of neferine, one of bioactive components of Nelumbo nucifera, on the proliferation and apoptosis in HCT116 cells. It also decreased cell viability in a dose-dependent manner, and induced the expression of pro-apoptotic NAG-1 protein and PARP cleavage in a dose- and time-dependent manner. In addition, PARP cleavage was recovered in part by the transfection of NAG-1 siRNA, indicating that NAG-1 may be one of the genes responsible for apoptosis induced by neferine. Overall, our findings may contribute to understand the molecular mechanisms of anti-proliferative and pro-apoptotic effects mediated by Nelumbo nucifera and neferine.

Effects of Lonicera caerulea extract on adipocyte differentiation and adipogenesis in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs) (댕댕이나무 열매 추출물이 지방전구세포와 마우스 지방유래줄기세포의 분화 및 지방 생성 억제에 미치는 영향)

  • Park, Miey;Lee, Changho;Lee, Hae-Jeung
    • Journal of Nutrition and Health
    • /
    • v.52 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • Purpose: Obesity is a major health problem of global significance because it is clearly associated with an increased risk of health problems, such as nonalcoholic fatty liver disease (NAFLD), diabetes, cardiovascular diseases, and cancer. Lonicera caerulea (LC) originates from high mountains or wet areas and has been used as a traditional medicine in northern Russia, China, and Japan. LC contains a range of bioactive constituents, such as vitamins, minerals, and polyphenols. This study examined the anti-obesity effects of LC during differentiation in preadipocytes. Methods: The cell viability assay was performed after the differentiation of 3T3-L1 cells for 7 days. Oil Red O staining was used to visualize the changes in lipid droplets in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs). The mRNA expression of obesity-related genes was determined by quantitative real-time PCR. Results: According to the results of Oil Red O staining, the lipid levels and size of lipid droplets in the adipocytes were reduced and the LC extract (LCE, 0.25-1 mg/mL) markedly inhibited adipogenesis in a dose-dependent manner. The treatment of LCE also decreased the mRNA expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer binding protein-${\alpha}$ ($C/EBP{\alpha}$), and sterol regulatory element binding protein 1 (SREBP1) in 3T3-L1 cells. Western blot analysis showed that the $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP1 protein levels in both 3T3-L1 and MADSC were reduced in a dose-dependent manner. Conclusion: These results suggest that LCE can inhibit adipogenic differentiation through the regulation of adipogenesis-related markers.

Inhibition of Tyrosinase by Metabolites Originating from Thrichoderma atroviride (Thrichoderma atroviride 배양액의 tyrosinase 억제제에 관한 연구)

  • Kang, Dong Woo;Kim, Kyu-Min;Kim, Ye-Seong;Seo, Yu-Jin;Song, Da-Yeong;Oh, Da-Yun;Choi, Si-On;Hwang, Ju-Hyeon;Kim, Sam Woong;Bang, Kyu Ho;Gal, Sang Wan
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.47-51
    • /
    • 2021
  • In today's society, functional whitening cosmetics are important to beauty. Fungi are known to produce a variety of whitening-related metabolites. In this study, we searched for tyrosinase inhibitors with metabolic products derived from Trichoderma atroviride supernatant in order to apply a material for whitening functional cosmetics. In addition, the inhibitory effect was compared to arbutin, which has already been approved as a whitening raw material by the Korea Ministry of Food and Drug Safety (KMFDS). The metabolites from the T. atroviride supernatant showed higher tyrosinase inhibitory activity than that of arbutin. Some of the tyrosinase inhibitors were stable to heat, whereas some were unstable. The heat unstable material was exhibited in the case of samples treated with little amounts, such as 0.02~0.2%. They were very unstable in acidic and alkali pHs, especially under acidic conditions. However, it was found that a weakly-acidic to neutral pH range was the optimal working pH, especially neutral pH. Since the activity of the inhibitory substances in the T. atroviride supernatant was maintained regardless of proteinase K treatment, it was assumed that the metabolites, but not the bioactive peptides, were involved in the activity. In summary, we propose that the metabolites derived from T. atroviride supernatant have strong potential as whitening raw material.

20(S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis

  • Lin, Kaili;Sze, Stephen Cho-Wing;Liu, Bin;Zhang, Zhang;Zhang, Zhu;Zhu, Peili;Wang, Ying;Deng, Qiudi;Yung, Ken Kin-Lam;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.325-333
    • /
    • 2021
  • Background: Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods: We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results: Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion: PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.

Atractylenoide II Isolated from Atractylodes macrocephala Inhibited Inflammatory Responses in Lipopolysaccharide-induced RAW264.7 Macrophages and BV2 Microglial Cells (백출에서 분리된 Atractylenolide II의 RAW264.7 대식세포와 BV2 미세아교세포에서의 항염증 효과)

  • Jin, Hong-Guang;Kim, Kwan-Woo;Li, Jing;Im, Hyeri;Lee, Dae Young;Yoon, Dahye;Jeong, Jin Tae;Kim, Geum-Soog;Oh, Hyuncheol;An, Ren-Bo;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.244-254
    • /
    • 2020
  • Atractylodes macrocephala is a perennial herb and is a member of the Compositae family. This plant is known to contain various bioactive constituents indicating anti-inflammatory, neuroprotective, anti-oxidant, immunological enhancement, and gastroprotective effects. In this investigation, we isolated four compounds with similar chemical structures from A. macrocephala, and evaluated their anti-inflammatory effects. Among the four compounds, compound 2(atractylenolide II) showed the second-best inhibitory effect on the lipopolysaccharide(LPS)-induced production of nitric oxide in RAW264.7 macrophages and BV2 microglial cells. Compound 2 also inhibited the LPS-induced the production of prostaglandin E2(PGE2), and the expression of inducible nitric oxide synthase(iNOS) and cyclooxygenase(COX)-2 proteins in both cells. In addition, compound 2 suppressed the production of pro-inflammatory cytokines including interleukin(IL)-1β, IL-6, and tumor necrosis factor(TNF)-α. These inhibitory effects were contributed by inactivation of nuclear factor kappa B(NF-κB) and mitogen-activated protein kinases(MAPKs) pathways by treatment with compound 2. This compound did not induce the expression of heme oxygenase(HO)-1 protein indicating that the anti-inflammatory effect of compound 2 was independent with HO-1 protein. Taken together, these results suggested that atractylenolide II can be a candidate material to treat inflammatory diseases.

Changes in color stability and antioxidant properties of dietary pigments after thermal processing at high pressures (고온가압 처리에 의한 식용색소의 화학안정성 및 산화방지활성 변화)

  • Oh, Boeun;Kim, Kunhee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.257-263
    • /
    • 2022
  • Various dietary pigments are added to processed foods to improve their sensory and commercial properties. In this study, autoclave sterilization (121℃ for 15 min at 15 psi) was performed on 34 food pigments, and changes in their color stability and antioxidant activity were analyzed. The autoclaving process drastically reduced the peak color intensities of water-soluble paprika and beet red (BR) by ~90%. Turmeric oleoresin (TO), water-soluble β-carotene, and grape skin color were also unstable and showed a remaining color intensity of 45-60%. The colors of all the synthetic pigments tested were stable under this process. The scavenging activities of BR and paprika against ABTS, DPPH, and AAPH radicals decreased significantly, whereas those of TO were enhanced after the autoclaving treatment. The results suggest that the chemical and bioactive properties of certain dietary pigments are affected by the autoclaving process, and this phenomenon should be considered during food processing.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.