• Title/Summary/Keyword: Bioactive glass

Search Result 52, Processing Time 0.019 seconds

Bioactivities and Isolation of Functional Compounds from Decay-Resistant Hardwood Species (고내후성 활엽수종의 추출성분을 이용한 신기능성 물질의 분리 및 생리활성)

  • 배영수;이상용;오덕환;최돈하;김영균
    • Journal of Korea Foresty Energy
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • Wood of Robinia pseudoacacia and bark of Populus alba$\times$P. glandulosa, Fraxinus rhynchophylla and Ulmus davidiana var. japonica were collected and extracted with acetone-water(7:3, v/v) in glass jar to examine whether its bioactive compounds exist. The concentrated extracts were fractionated with hexane, chloroform, ethylacetate and water, and then freeze-dried for column chromatography and bioactive tests. The isolated compounds were sakuranetin-5-O-$\beta$-D-glucopyranoside from Populus alba $\times$Pl glandulosa, 4--ethyoxy-(+)-leucorobinetinidin frm R. pseudoacacia and fraxetion from F. rhynchophylla and were characterized by $^1H$ and$^{13}C $ NMR and positive FAB-MS. Decay-resistant activity was expressed by weight loss ratio and hyphae growth inhibition in the wood dust agar medium inoculated wood rot fungi. R. pseudoacacia showed best anti-decaying property in both test and its methanol untreated samples, indicating higher activity than methanol treated samples in hyphae grwoth test. In antioxidative test, $\alpha$-tocopherol, one of natural antioxidants, and BHT, one of synthetic antioxidants, were used as references to cmpare with the antioxidant activities of the extacted fractions. Ethylacetate fraction of F. rhynchophylla bark indicated the hightest activity in this test and all fractions of R. pseudiacacia extractives also indicated higher activities compared with the other fractions. In the isolated compounds, aesculetin isolated from F. rhynchophylla bark showed best activity and followed by robonetinidin from R. pseudoacaica.

  • PDF

A study of the clinical effects of various bone graft materials (다양한 골 이식재의 임상 효과에 대한 고찰)

  • Lee, Seung-Bum;Yon, Je-Young;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Lee, Yong-Geun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.719-732
    • /
    • 2007
  • Purpose: Various bone graft materials are being used for periodontal tissue regeneration. Th materials are being developed continuously for ideal clinical effects. Therefore, it is necessary to identify the clinical characteristics of each bone graft material through comparing the various bone graft materials statistically and in doing so, proposing a more efficient bone graft material. In this study, the following results were attained through comparing the clinical effects among the bone graft materials, using the statistical method based on the clinical studies published at the department of periodontology of Yonsei hospital. Materials and Method: 6 selected studies of department of Periodontology at Yonsei University Hospital were based on clinical study of bone grafting in intrabony defects. It was compared the clinical parameters among the 6 clinical studies, using the statistical META analysis. Result: When comparing the probing depth reduction, there was a relatively great amount of decease when using the xenograft, Anorganic Bovine Derived Hydroxapatite Bone Matrix/Cell Binding Peptide(ABM/P-15: PepGen $P-15^{(R)}$) and the autogenous bone and absorbable membrane, d, 1-alctide/glycolide copolymer(GC: $Biomesh^{(R)}$). The allogfrafts showed a relatively low decrease in the probing depth and clinical attachment change. It also showed a slight decrease in the bone probing depth. The allografts showed various results according to different bone graft materials. When comparing the ABM/P-15 and bovine bone $powder(BBP^{(R)})$, ABM/P-15 showed a relatively high clinical attachment level and the bovine bone powder showed a relatively high clinical attachment level. The probing depth change and gingival recession change showed a lower value than the mean value between the two bone graft materials. The synthetic bone showed a relatively high decrease in clinical attachment level and periodontal probing depth change. There was a relatively larger amount of gingival recession when using Bioactive Glass(BG) but a relatively low bone regeneration effect was seen. Conclusion: Good restorative results of the periodontal tissue can be attained by applying the various bone graft materials being used today after identifying the accurate clinical effects.