• 제목/요약/키워드: Bioactive components

검색결과 323건 처리시간 0.024초

Effect of Puffing in the Extraction of Active Ingredients from the Roots of Paeonia lactiflora and Astragalus membranaceus

  • Lee, Hyojin;Jang, Kyoung Won
    • Natural Product Sciences
    • /
    • 제28권2호
    • /
    • pp.89-92
    • /
    • 2022
  • In Asia, the roots of Paeonia lactiflora and Astragalus membranaceus have been used as therapeutic agents for thousands of years. Once the medicinal plants are harvested, they are dried and their ingredients are extracted by heat-mediated reflux extraction. However, the condensed structure of organic products (especially roots) limits the extraction of bioactive components. In this study, we assessed the effect of the puffing method (using high temperature and pressure) before the extraction process in relation to the profile and antioxidant capacity of active ingredients. We demonstrated that the additional puffing process before extraction methods improves the yield of polyphenol concentrations and antioxidant activities from the roots of P. lactiflora and A. membranaceus.

Phytochemical Compounds from the Ethanolic Extract of Gymnema sylvestre, Senna auriculata and Cissus quadrangularis through GC-MS Analysis

  • Sindhuja G;Mary Agnes A
    • Mass Spectrometry Letters
    • /
    • 제14권2호
    • /
    • pp.25-35
    • /
    • 2023
  • Plants are a traditional source of many chemicals used as biochemical, flavors, food, color, and pharmaceuticals in various countries, especially India. Most herbal medicines and their derivatives are often made from crude extracts containing a complex mixture of various phytochemical chemical components (secondary metabolites of the plants). This study aimed to identify bioactive compounds from the different parts of the plant from the ethanolic extract of Gymnema sylvestre, Senna auriculata, and Cissus quadrangularis (leaves, flower, stem) by gas chromatography-mass spectroscopy (GC-MS). The gas chromatography - mass spectrometry analysis revealed the presence of various compounds like 3,4-dimethylcyclohexanol, hexanoic acid, D-mannose, and N-decanoic acid. Hence, the Gymnema sylvestre, Senna auriculata, and Cissus quadrangularis may have chemopreventive, anti-cancer, anti-microbial activity, antioxidant, anti-diabetic activity, anti-inflammatory, and antifungal due to the presence of secondary metabolites in the ethanolic extract. These phytochemicals are supported for traditional use in a variety of diseases.

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Young-Su Yi
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.122-128
    • /
    • 2024
  • Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.

Quantitative Determination of Marker Compounds and Pattern Recognition Analysis for Quality Control of Alismatis Rhizoma by HPLC

  • Na, Braham;Men, Chu Van;Kim, Kyung Tae;Lee, Min Jung;Lee, Eunsil;Jin, Hong-Guang;Woo, Eun Ran;Woo, Mi Hee;Kang, Jong Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2081-2085
    • /
    • 2013
  • A quantitative method for determining levels of three bioactive compounds based on pattern recognition was developed and fully validated for the quality control of Alismatis Rhizoma (AR) by HPLC. Separation conditions were optimised using an Optimapak $C_{18}$ column ($250mm{\times}4.6mm$, 5 ${\mu}m$) with a mobile phase of acetonitrile and 0.1% aqueous phosphoric acid and detection wavelengths of 205 and 245 nm. Method validation yielded acceptable linearity ($r^2$ > 0.9998) and percent recovery (98.06%-101.71%). Limits of detection ranged from 0.08 to 0.15 ${\mu}g/mL$. Levels of the three bioactive compounds, alisol C acetate, alisol B, and alisol B acetate, in AR were 0.07-0.45, 0.38-10.32, and 1.13-8.59 mg/g dried weight, respectively. Pattern analyses based on these three compounds were able to differentiate Chinese and Korean samples accurately. The results demonstrate that alisol B and its acetate may be used as marker compounds for AR quality and can be regulated to no less than 0.36 and 1.29 mg/g of dried sample, respectively. The method described here is suitable for quantitative analyses and quality control of multiple components in AR.

Comparative Reverse Screening Approach to Identify Potential Anti-neoplastic Targets of Saffron Functional Components and Binding Mode

  • Bhattacharjee, Biplab;Vijayasarathy, Sandhya;Karunakar, Prashantha;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5605-5611
    • /
    • 2012
  • Background: In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. Methods: In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. Results: The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. Conclusion: This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.

질소시비가 감국의 생육 및 유효성분에 미치는 영향 (Effects of Nitrogen Application on Growth and Bioactive Compounds of Chrysanthemum indicum L. (Gamgug))

  • 김동관;이경동
    • 한국약용작물학회지
    • /
    • 제17권5호
    • /
    • pp.363-368
    • /
    • 2009
  • To fulfill the increasing demand for a high quality of flower, we investigated the effects of nitrogen application on plant growth, yield and bioactive compounds of Chrysanthemum indicum L.. C. indicum L. was cultivated in a pot scale, and nitrogen applied with the level of 0 (N0), 50 (N50), 100 (N100), 150 (N150), 200 (N200) and $300\;(N300)\;kg\;ha^{-1}$ to suggest optimum rate of nitrogen fertilization. Phosphate and potassium applied the same amount of $80-80\;kg\;ha^{-1}$ ($P_2O_5-K_2O$) in all treatments. Growth characteristics and yields of C. indicum L. were significantly affected by nitrogen application. Maximum yield achieved in 265 and $295\;kg\;ha^{-1}$ N treatment on the whole plant and the flower parts, respectively. The nitrogen content and uptake of whole plant significantly increased by the increase of nitrogen application. Five major components of essential oil, $\alpha$-pinene, 1,8-cineol, chrysanthenone, germacrene-D, and $\alpha$-curcumene in flowerheads of C. indicum L. occupied approximately 40% of peak area, germacrene-D decreased by the increase of nitrogen application among them. However, cumambrin A contents in the flower parts of C. indicum L. were affected negatively by the increase of nitrogen application, but total yields of cumambrin A in flower part significantly increased. Conclusively, nitrogen fertilization could increase the yield of flowerheads. The optimum application level of nitrogen fertilizer might be on the range of $265-295\;kg\;ha^{-1}$ in a mountainous soil.

Simultaneous qualitative and quantitative analysis of morroniside and hederacoside D in extract mixture of Cornus officinalis and Stauntonia hexaphylla leaves to improve benign prostatic hyperplasia by HPLC-UV

  • Dan, Gao;Cho, Chong Woon;Vinh, Le Ba;Kim, Jin Hyeok;Cho, Kyoung Won;Kim, Young Ho;Kang, Jong Seong
    • 분석과학
    • /
    • 제33권5호
    • /
    • pp.224-231
    • /
    • 2020
  • With the improvement in the standard of living and extension of life expectancy, the incidence of prostate diseases has increased yearly, thus becoming a serious disease affecting the health of men. The extract mixture of Cornus officinalis and Stauntonia hexaphylla leaves is a developed functional food formula to improve prostate health. This study developed a simultaneous analytical method of bioactive compounds for quantifying the mixture of Cornus officinalis and S. hexaphylla leaves using high-pressure liquid chromatography-ultraviolet (HPLC-UV). HPLC analytical condition was performed on a Hector C18 column with a mobile phase of 0.1 % formic acid in water (A) and 0.1 % formic acid in acetonitrile (B) under the following gradient conditions: 0-50 min, 12 %-40 % (B) at a flow rate of 1.0 mL/min. Meanwhile, this method was validated properly and successfully used to quantify the bioactive components of morroniside and hederacoside D in 20 sample batches and assess the quality of different ages and seasons of S. hexaphylla leaves. The result showed that the content of morroniside in the extract mixture of Cornus officinalis and S. hexaphylla leaves ranged from 1.38-1.62 mg/g, and the hederacoside D ranged from 28.42-32.02 mg/g, suggesting that this novel analytical method will be suitable for the quality control of the extract mixture to improve benign prostatic hyperplasia.

Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats

  • Jung, Moon Hee;Seong, Pil Nam;Kim, Myung Hwan;Myong, Na-Hye;Chang, Moon-Jeong
    • Nutrition Research and Practice
    • /
    • 제7권5호
    • /
    • pp.366-372
    • /
    • 2013
  • The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities.

Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives

  • Hong, Ji Won;Kang, Nam Seon;Jang, Hyeong Seok;Kim, Hyung June;An, Yong Rock;Yoon, Moongeun;Kim, Hyung Seop
    • Ocean and Polar Research
    • /
    • 제41권4호
    • /
    • pp.289-309
    • /
    • 2019
  • Marine microalgae have long been used as food additives and feeds for juvenile fish and invertebrates as their nutritional content is beneficial for humans and marine aquaculture species. Recently, they have also been recognized as a promising source for cosmeceutical, nutraceutical, and pharmaceutical products as well as biofuels. Marine microalgae of various species are rich in multiple anti-oxidant phytochemicals and their bioactive components have been employed in cosmetics and dietary supplements. Oil contents in certain groups of marine microalgae are extraordinarily rich and abundant and therefore have been commercialized as omega-3 and omega-6 fatty acid supplements and mass production of microalgae-based biodiesels has been demonstrated by diverse research groups. Numerous natural products from marine microalgae with significant biological activities are reported yearly and this is attributed to their unique adaptive abilities to the great diversity of marine habitats and harsh conditions of marine environments. Previously unknown toxin compounds from red tide-forming dinoflagellates have also been identified which opens up potential applications in the blue biotechnology sector. This review paper provides a brief overview of the biotechnological potentials of Korean marine microalgae. We hope that this review will provide guidance for future marine biotechnology R&D strategies and the various marine microalgae-based industries in Korea.