• 제목/요약/키워드: Bioactive agents

검색결과 158건 처리시간 0.025초

Ginseng-derived compounds as potential anticancer agents targeting cancer stem cells

  • Ji-Sun Lee;Ho-Young Lee
    • Journal of Ginseng Research
    • /
    • 제48권3호
    • /
    • pp.266-275
    • /
    • 2024
  • Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.

해조류 유래 호흡기 질환 천식 치료제 연구 동향 (A Review of Marine Algae-derived Therapeutic Agents for Respiratory Disease Asthma)

  • 김태희;허성영;오건우;김민성;최일환;정원교
    • 한국해양바이오학회지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Asthma is a complex inflammatory disease of the lung characterized by variable airflow obstruction, airway hyperresponsiveness, airway inflammation, and reduction of respiratory function. Its prevalence and incidence are increasing because of the effect of various environmental and lifestyle risk factors. Steroid inhalation, long-acting agonists, and other synthetic drugs are used for the treatment of this disease. However, they have some side effects and show unsatisfied result and response after treatment. Therefore, many researchers have focused on the development of natural product-related treatment for asthma to suppress the side effects and unsatisfied results. Seaweeds contain various bioactive compounds with anti-inflammatory, antibacterial, and anti-oxidant activities. Thus, we investigated the asthma treatment-related literature using marine algae via the Google scholar search engine. Consequently, the literature is rarely investigated, but is increasing steadily. The literature was performed as a comparison study with an ovalbumin-induced group or drug-treated group, and investigated the antiasthma activity of algae ethanol extract. Although many researchers have studied marine algae-derived therapeutic agents for asthma, the amount of literature is rare compared with those of herbal medicine-derived therapeutic agents. Conclusively, we suggest that many researchers should investigate and develop algae-derived therapeutic agents for asthma treatment.

Effect of three nanobiomaterials on microhardness of bleached enamel

  • Khoroushi, Maryam;Shirban, Farinaz;Kaveh, Sara;Doustfateme, Samaneh
    • Restorative Dentistry and Endodontics
    • /
    • 제41권3호
    • /
    • pp.196-201
    • /
    • 2016
  • Objectives: The aim of this in vitro study was to evaluate the effect of incorporating three different nanobiomaterials into bleaching material on microhardness of bleached enamel. Materials and Methods: The crowns of 24 extracted sound human molars were sectioned. Sixty enamel specimens ($2{\times}3{\times}4 mm$) were selected and divided into five groups (n = 12): Group 1 received no bleaching procedure (control); Group 2 underwent bleaching with a 40% hydrogen peroxide (HP) gel; Groups 3, 4, and 5 were bleached with a 40% HP gel modified by incorporation of bioactive glass (BAG), amorphous calcium phosphate (ACP) and hydroxyapatite (HA), respectively. The enamel microhardness was evaluated. The differences in Knoop microhardness data of each group were analyzed by one-way ANOVA, followed by post hoc Tukey tests. Results: Significant differences were observed between the study groups. The enamel microhardness changes in Groups 1, 3, 4, and 5 were significantly lower than that of Group 2 (p < 0.001). Conclusions: Within the limitations of this study, it can be concluded that incorporation of each one of the three tested biomaterials as remineralizing agents might be effective in decreasing enamel microhardness changes subsequent to in-office bleaching.

Bioactive Phenolic Constituents from the Culms of Phyllostachys bambusoides

  • Kim, Hyun-Jung;Kang, Min-Ah;Kim, So-Hyun;Yim, Soon-Ho;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • 제17권4호
    • /
    • pp.267-272
    • /
    • 2011
  • In our search for bioactive phenolics from plants, the culms of Phyllostachys bambusoides has been selected for investigation of anti-cariogenic and 1,1-diphenylpicrylhydrazyl (DPPH) radical scavenging agents based on the initial screening results. Fractionation process of n-hexane and $CHCl_3$ extracts afforded four phenolic constituents, ferulic acid (1), vanillin (2), coniferaldehyde (3), and coniferyl alcohol (4) as guided by their DPPH free radical scavenging activities. Additionally, activity-guided fractionation of EtOAc extract with anti-cariogenic activity has resulted in the isolation of coniferaldehyde (3), 2,6-dimethoxy-p-benzoquinone (5), p-methoxycinnamic acid (6), (${\pm}$)-balanophonin (7), and 6-methoxychromanone (8). The structures of 1 - 8 were determined by spectroscopic data interpretation, and also by comparison of their data with the published values. Phenolic compounds 1 - 4 exhibited similar DPPH radical scavenging activities compared with the synthetic antioxidant, butylated hydroxytoluene (BHT), and compounds 3 and 5 - 8 showed significant antibacterial activity against cariogenic oral streptococci, Streptococcus mutans and S. sobrinus.

Health Effects of Small Volatile Compounds from East Asian Medicinal Mushrooms

  • Pennerman, Kayla K.;Yin, Guohua;Bennett, Joan Wennstrom
    • Mycobiology
    • /
    • 제43권1호
    • /
    • pp.9-13
    • /
    • 2015
  • Medicinal fungi, taken whole or as various forms of extracts, have been used to alleviate, cure or prevent human ailments since pre-historic times. In particular, Asian cultures have incorporated a variety of mushrooms into their medical practices. Chemically pure, bioactive metabolites from fungi have been a mainstay of modern pharmacological research and in addition to antibiotics, include anticancer agents, immunosuppressants, enzyme inhibitors, antagonist and agonists of hormones, and a variety of psychotropic substances. However, to date not many studies have focused on the possible health benefits of odorant volatile organic compounds (i.e., gas phase compounds). An analysis of these compounds for their health related effects will expand the range of compounds available for the treatment of chronic and acute diseases. This review highlights phenolic acids and monoterpenes from Asian medicinal mushrooms (AMMs), which not only produce pleasant odors but also have antioxidant and antibacterial effects. Odorant bioactive volatile phase compounds from medicinal mushrooms remain an essentially untapped source for future medicines, and AMMs remain a promising resource for future pharmacological research.

충치균에 대한 생리활성 생약성분의 분리 및 약효평가(1) -튜립나무잎의 항균성 성분과 안전성에 대하여- (The Isolation and Evaluation of Bioactive Components from Crude Drugs against a Cariogenic Bacterium, Streptococcus mutans OMZ 176 (1) -On the Antibacterial Component of the Leaves of Liriodendron tulipifera and Its Safety-)

  • 배기환;김봉희;명평근;변재화
    • 약학회지
    • /
    • 제34권2호
    • /
    • pp.106-111
    • /
    • 1990
  • The isolation and identification of an antibacterial component, from the leaves of Liriodendron tulipifera. K. Kotch against a cariogenic bacterium Streptococcus mutans OMZ 176, were carried out for developing of anticariogenic agents. The bioactive component was elucidated as ${\beta}-liriodenolide$, which was isolated newly from the leaves of L. tulipifera. The minimal inhibitory concentration (MIC) of ${\beta}-liriodenolide$ was $100\;{\mu}g/ml$ and the antibacterial activity was stronger than that of berberine. ${\beta}-Liriodenolide$ inhibited ${\beta}-lactamase$ activity, 50, 100 and $200\;{\mu}M$ ${\beta}-liriodenolide$ did ${\beta}-lactamase$ activity as 0.7, 3.5 and 19.7%, respectively. The toxicity of ${\beta}-liriodenolide$ was not found with the method of photohemolysis.

  • PDF

Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances

  • Kim, Young-Sook;Song, Ja-Gyeong;Lee, In-Kyoung;Yeo, Woon-Hyung;Yun, Bong-Sik
    • Mycobiology
    • /
    • 제41권3호
    • /
    • pp.164-166
    • /
    • 2013
  • A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

Adventitious Root Cultures of Panax ginseng C.V. Meyer and Ginsenoside Production through Large-Scale Bioreactor System

  • Hahn, Eun-Joo;Kim, Yun-Soo;Yu, Kee-Won;Jeong, Cheol-Seung;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2003
  • The adventitious root of Panax ginseng C.A. Meyer is regarded as an efficient alternative to cell culture or hairy root culture for biomass production due to its fast growth and stable metabolite production. To determine optimal culture conditions for the bioreactor culture of ginseng roots, experiments have been conducted on physical and chemical factors such as bioreactor type, dissolved oxygen, gas supply, aeration, medium type, macro- and micro-elements, medium supplement during culture period, sucrose concentration, osmotic agents, medium pH and light. Elicitation is a key step to increase ginsenoside accumulation in the adventitious roots but biomass growth is severely inhibited by elicitor treatment. To obtain high ginsenoside content with avoiding biomass decrease, we applied two-stage bioreactor culture system. Ginseng adventitious roots were cultured for 40 days to maximize biomass increase followed by elicitation for 7 days to enhance ginsenoside accumulation. We also experimented on types and concentrations of jasmonate to determine optimal elicitation methods. In this paper, we discussed several factors affecting the root propagation and ginsenoside accumulation. Based on the results obtained from previous experiments we have established large-scale bioreactor system (1 ton-10 ton) for the efficient production of ginseng adventitious roots and bioactive compounds including ginsenoside. Still, experiments are on going in our laboratory to determine other bioactive compounds having effects on diet, high blood pressure, DPPH elimination and increasing memories.

Antioxidant and Antifungal Activity of Endophytic Fungi Associated with Agarwood Trees

  • Hidayat, Asep;Turjaman, Maman;Faulina, Sarah Asih;Ridwan, Fadel;Aryanto, Aryanto;Najmulah, Najmulah;Irawadi, Tun Tedja;Iswanto, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.459-471
    • /
    • 2019
  • Several species of Aquilaria and Gyrinops are native to Indonesia and well known as agarwood-producing trees with a high economic value. Their bioactive compounds have a wide spectrum of uses, such as in medicine and cosmetics. These genera have undergone extensive search for novel bioactive compounds. The purpose of this study was to isolate, identify, and characterize the endophytic fungi community associated with Aquilaria malaccensis, A. microcarpa, Gyrinops versteegii, and A. crassna trees and investigate their bioactive properties as antioxidant agents and antagonists. A total of 50 fungi were successfully isolated from different tissues of the four species of agarwood-producing trees. Two isolates exhibited strong antioxidant activity, namely, Apodus oryzae (R2MC3A, $IC_{50}$ 60.92 mg/mL) and Diaporthe sp. (P1DS1[C], $IC_{50}$ 76.65 mg/mL). Two isolates, Pestalotiopsis theae (P3BS3[B]) and Curvularia sp. (P2CD3A), showed >75% antifungal activity against pathogenic Fusarium solani. The results revealed that endophytic fungi associated with the studied agarwood-producing trees had potential antioxidant and antifungal activities for further applications in biotechnology.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF