DOI QR코드

DOI QR Code

Antioxidant and Antifungal Activity of Endophytic Fungi Associated with Agarwood Trees

  • Hidayat, Asep (Forest Microbiology Laboratory, Forest research and Development Centre, Research, Development and Innovation Agency, Ministry of Environmental and Forestry) ;
  • Turjaman, Maman (Forest Microbiology Laboratory, Forest research and Development Centre, Research, Development and Innovation Agency, Ministry of Environmental and Forestry) ;
  • Faulina, Sarah Asih (Forest Microbiology Laboratory, Forest research and Development Centre, Research, Development and Innovation Agency, Ministry of Environmental and Forestry) ;
  • Ridwan, Fadel (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University) ;
  • Aryanto, Aryanto (Forest Microbiology Laboratory, Forest research and Development Centre, Research, Development and Innovation Agency, Ministry of Environmental and Forestry) ;
  • Najmulah, Najmulah (Forest Microbiology Laboratory, Forest research and Development Centre, Research, Development and Innovation Agency, Ministry of Environmental and Forestry) ;
  • Irawadi, Tun Tedja (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University) ;
  • Iswanto, Apri Heri (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara)
  • Received : 2019.03.16
  • Accepted : 2019.07.15
  • Published : 2019.07.25

Abstract

Several species of Aquilaria and Gyrinops are native to Indonesia and well known as agarwood-producing trees with a high economic value. Their bioactive compounds have a wide spectrum of uses, such as in medicine and cosmetics. These genera have undergone extensive search for novel bioactive compounds. The purpose of this study was to isolate, identify, and characterize the endophytic fungi community associated with Aquilaria malaccensis, A. microcarpa, Gyrinops versteegii, and A. crassna trees and investigate their bioactive properties as antioxidant agents and antagonists. A total of 50 fungi were successfully isolated from different tissues of the four species of agarwood-producing trees. Two isolates exhibited strong antioxidant activity, namely, Apodus oryzae (R2MC3A, $IC_{50}$ 60.92 mg/mL) and Diaporthe sp. (P1DS1[C], $IC_{50}$ 76.65 mg/mL). Two isolates, Pestalotiopsis theae (P3BS3[B]) and Curvularia sp. (P2CD3A), showed >75% antifungal activity against pathogenic Fusarium solani. The results revealed that endophytic fungi associated with the studied agarwood-producing trees had potential antioxidant and antifungal activities for further applications in biotechnology.

Keywords

HMJGBP_2019_v47n4_459_f0001.png 이미지

Fig. 1. Dual culture assay between potential endophytic against the pathogen of F. solani after 6 days incubation. A. P. theae P3BS3[B], B. Curvularia sp. (P2CD3A).

Table 1. Antioxidant and antifungal activity of thirteen potential endophytic fungi

HMJGBP_2019_v47n4_459_t0001.png 이미지

Table 2. Biomass, yield and phytochemical analyisis of crude extract etyl acetate soluble of 13 isolates endophytic fungi after fermentation at 14 days

HMJGBP_2019_v47n4_459_t0002.png 이미지

Table 3. Identification of 13 potential endophytic fungi based on internal transcribed spacer (ITS) using BLAST analysis

HMJGBP_2019_v47n4_459_t0003.png 이미지

References

  1. Alurappa, R., Chowdappa, S. 2018. Antimicrobial activity and phytochemical analysis of endophytic fungal extracts isolated from ethno-pharmaceutical plant Rauwolfia tetraphylla L. Ramesha. Journal of Pure and AppliedMicrobiology 12(1): 317-332.
  2. Atlas, R.M. 2004. Handbook of microbiological media. CRC Press, Florida, USA.
  3. Barden, A., Anak, N.A., Mulliken, T., Song, M. 2000. Heart of the matter: agarwood use and trade and CITES implementation for Aquilaria malaccensis. Cambridge : TRAFFIC International.
  4. Beek, H.H.v., Philips, D. 1999. Agarwood: trade and CITES implementation in Southeast Asia.
  5. Cai, L., Jeewon, R., Hyde, K.D. 2006. Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycological Research 110(2): 137-150. https://doi.org/10.1016/j.mycres.2005.09.014
  6. Chen, G., Liu, C., Sun, W. 2016. Pollination and seed dispersal of Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae): An economic plant species with extremely small populations in China. Plant Diversity 38(5): 227-232. https://doi.org/10.1016/j.pld.2016.09.006
  7. Chen, H., Yang, Y., Xue, J., Wei, J., Zhang, Z., Chen, H. 2011. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) Gilg trees. Molecules 16(6): 4884-4896. https://doi.org/10.3390/molecules16064884
  8. Chen, H.Q., Wei, J.H., Yang, J.S., Zhang, Z., Yang, Y., Gao, Z.H., Sui, C., Gong, B. 2012. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chemical & Biodiversity 9(2): 236-250. https://doi.org/10.1002/cbdv.201100077
  9. Chi, H.K., Cuong, L.H., Hang, T.T.N., Luyen, N.D., Ha, T.T.H., Huong, L.M. 2016. Biological characterization of fungal endophytes isolated from agarwood tree Aquilaria crassna Pierre Ex Lecomte. Vietnam Journal of Biotechnology 14(1): 149-156. https://doi.org/10.15625/1811-4989/14/1/9305
  10. Chutulo, E.C., Chalannavar, R.K. 2018. Endophytic mycoflora and their bioactive compounds from Azadirachta Indica : A comprehensive review. Journal of Fungi 4(2): 1-12.
  11. Cui, J., Guo, S., Xiao, P. 2011. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. Journal of Zhejiang University Science B 12(5): 385-392. https://doi.org/10.1631/jzus.B1000330
  12. Daniels, H.A. 2017. Phylogenetic identification of pathogenic and endophytic fungal populations in west Coast Douglas-fir (Pseudotsuga menziesii) Foliage. Oregon State University.
  13. Dennis, C., Webster, J. 1971. Antagonistic properties of species-groups of Trichoderma: III. Hyphal interaction. Transaction of the British Mycological Society 57(3): 363-369. https://doi.org/10.1016/S0007-1536(71)80050-5
  14. Deshmukh, S., Gupta, M., Prakash, V., Saxena, S. 2018. Endophytic Fungi: A source of potential antifungal compounds. Journal of Fungi 4(3): 77. https://doi.org/10.3390/jof4030077
  15. Deshmukh, S.K., Prakash, V., Ranjan, N. 2017. Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochemistry Reviews 16(5): 883-920. https://doi.org/10.1007/s11101-017-9495-3
  16. Donovan, D.G., Puri, R.K. 2004. Learning from traditional knowledge of non-timber forest products: Penan Benalui and the Autecology of Aquilaria in Indonesian Borneo. Ecology and Society 9(3): 3.
  17. Faeth, S.H. 2002. Are endophytic fungi defensive plant mutualists? Oikos 98: 25-36. https://doi.org/10.1034/j.1600-0706.2002.980103.x
  18. Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W. 2013. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia-Molecular Phylogeny and Evolution of Fungi 31: 1-41. https://doi.org/10.3767/003158513X666844
  19. Gong, L.J., Guo, S.X. 2009. Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. African Journal of Biotechnology 8(5): 731-736.
  20. Ham, Y., Kim, T-J. 2018. Plant extracts inhibiting biofilm formation by Streptococcus mutans without antibiotic Activity. Journal of the Korean Wood Science and Technology 46(6): 692-702. https://doi.org/10.5658/WOOD.2018.46.6.692
  21. Hamzah, T.N.T., Lee, S.Y., Hidayat, A., Terhem, R., Faridah-hanum, I., Mohamed, R. 2018 Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Frontiers in Microbiology 9: 1707. https://doi.org/10.3389/fmicb.2018.01707
  22. Hidayat, A., Iswanto, A.P., Susilowati, A., Rachmat, H.H. 2018. Radical scavenging activity of kemenyan resin produced by an Indonesian native plant, Styrax sumatrana. Journal of the Korean Wood Science and Technology 46(4): 346-354. https://doi.org/10.5658/WOOD.2018.46.4.346
  23. Jellison, J., Jasalavich, C. 2000.A review of selected methods for the detection of degradative fungi. International Biodeterioration & Biodegradation 46(3): 241-244. https://doi.org/10.1016/S0964-8305(00)00075-5
  24. Jeong, M-J., Yang, J., Choi, W-S., Kim, J-W., Kim, S-J., Park, M-J. 2017. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata(Blume) Koidz leaves. Journal of the Korean Wood Science and Technology 45(1): 96-106. https://doi.org/10.5658/WOOD.2017.45.1.96
  25. Jung, J-Y., Yang, J-K., Lee, W-H. 2017. Antioxidant and safety test of natural extract of Quercus mongolica. Journal of the Korean Wood Science and Technology 45(1): 116-125. https://doi.org/10.5658/WOOD.2017.45.1.116
  26. Kamonwannasit, S., Nantapong, N., Kumkrai, P., Luecha, P., Kupittayanan, S., Chudapongse, N. 2013. Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Annals of Clinical Microbiology and Antimicrobials 12(20): 1-7. https://doi.org/10.1186/1476-0711-12-1
  27. Kaul, S., Gupta, S., Ahmed, M., Dhar, M.K. 2012. Endophytic fungi from medicinal plants: A treasure hunt for bioactive metabolites. Phytochemistry Reviewa 11(4): 487-505. https://doi.org/10.1007/s11101-012-9260-6
  28. Kim, J-W., Um, M., Lee, J-W. 2018. Antioxidant activities of hot water extracts from different parts of Rugosa rose (Rosa rugosa Thunb.). Journal of the Korean Wood Science and Technology 46(1): 38-47. https://doi.org/10.5658/WOOD.2018.46.1.38
  29. Kim, S-H., Lee, S-Y., Cho, S-M., Hong, C-Y., Park, S-Y., Park, M-J., Choi, I-G. 2017. Antioxidant activities of Cryptomeria japonica leaves extracts by extraction Methods. Journal of the Korean Wood Science and Technology 45(5): 495-510. https://doi.org/10.5658/WOOD.2017.45.5.495
  30. Kim, S-H., Lee, S-Y., Cho, S-M., Hong, C-Y., Park, M-J., Choi, I-G, 2016. Evaluation on anti-fungal activity and synergy effects of essential oil and their constituents from Abies holophylla. Journal of the Korean Wood Science and Technology 44(1): 113-123. https://doi.org/10.5658/WOOD.2016.44.1.113
  31. Khoddami, A., Wilkes, M.A., Roberts, T.H. 2013. Techniques for analysis of plant phenolic compounds. Molecules 18(2): 2328-2375. https://doi.org/10.3390/molecules18022328
  32. Kumar, M., Shukla, P.K. 2005. Use of PCR targeting of internal transcribed spacer regions and singlestranded conformation polymorphism analysis of sequence variation in different regions of rRNA genes in fungi for rapid diagnosis of mycotic keratitis. Journal of Clinical Microbiology 43(2): 662-668. https://doi.org/10.1128/JCM.43.2.662-668.2005
  33. Lamit, L.J., Lau, M.K., Sthultz, C.M., Wooley, S.C., Whitham, T.G., Gehring, C.A. 2014. Tree genotype and genetically based growth traits structure twig endophyte communities. American Journal of Botany 101 (3): 467-478. https://doi.org/10.3732/ajb.1400034
  34. Li, J.Y., Sidhu, R.S., Ford, E.J., Long, D.M., Hess, W.M., Strobel, G.A. 1998. The induction of taxol production in the endophytic fungus - Periconia sp from Torreya grandifolia. Journal of Industrial Microbiology and Biotechnology 20(5): 259-264. https://doi.org/10.1038/sj.jim.2900521
  35. Li, Z-J., Chen, S., Yang, X-H., Wang, R., Min, H-J., Wu, L., Si, C-L., Bae, Y-S. 2018. Secondary metabolites with anti-complementary activity from the stem barks of Juglans mandshuricaMaxim. Journal of the Korean Wood Science and Technology 46(2): 118-124. https://doi.org/10.5658/WOOD.2018.46.2.118
  36. Ascencio, P.G.M., Ascencio, S.D., Aguiar, A.A., Fiorini, A., Pimenta, R.S. 2014. Chemical assessment and antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Costus spiralis (Jacq.) Roscoe (Costaceae). Evidence-based Complementary and Alternative Medicine 14(3): 1-10. https://doi.org/10.1186/1472-6882-14-1
  37. Mondol, M.A.M., Farthouse, J., Islam, M.T., Ffler, A.S., Laatsch, H. 2017. Metabolites from the endophytic fungus Curvularia sp. M12 act as motility inhibitors against Phytophthora capsici Zoospores. Journal of Natural Products 80(2): 347-355. https://doi.org/10.1021/acs.jnatprod.6b00785
  38. Naef, R. 2011. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour and Fragrance Journal 26(2): 73-87. https://doi.org/10.1002/ffj.2034
  39. Nimnoi, P., Pongsilp, N., Lumyong, S. 2010. Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World Journal of Microbiology and Biotechnology 26(2): 193-203. https://doi.org/10.1007/s11274-009-0159-3
  40. Nimnoi, P., Pongsilp, N., Lumyong, S. 2011. Actinobacterial community and diversity in rhizosphere soils of Aquilaria crassna Pierre ex Lec assessed by RT-PCR and PCR-DGGE. Biochemical Systematic and Ecology 39(4-6): 509-519. https://doi.org/10.1016/j.bse.2011.07.010
  41. Oldfield, S., Lusty, C., MacKinven, A. 1998. The world list of threatened trees. World Conservation Press, Cambridge, UK.
  42. Premalatha, K., Kalra, A. 2013. Molecular phylogenetic identification of endophytic fungi isolated from resinous and healthy wood of Aquilaria malaccensis, a red listed and highly exploited medicinal tree. Fungal Ecology 6(3): 205-211. https://doi.org/10.1016/j.funeco.2013.01.005
  43. Qi, J., Lu, J.J., Liu, J.H., Yu, B.Y. 2009. Flavonoid and a rare benzophenone glycoside from the leaves of Aquilaria sinensis. Chemical & Pharmaceutical Bulletin (Tokyo) 57(2): 134-137. https://doi.org/10.1248/cpb.57.134
  44. Sadeghi, Z., Valizadeh, J., Azyzian, S.O., Akaberi, M. 2015. Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchestan, Iran. Avicenna Journal of Phytomedicine 5(1): 1-9.
  45. Saikia, P., Khan, M.L. 2013. Population structure and regeneration status of Aquilaria malaccensis Lam. in homegardens of Upper Assam, northeast India. Tropical Ecology 54(1): 1-13.
  46. Santoso, E. (2013) Agarwood formation by fungal bioinduction. In: Susmianto A, Turjaman M, Setio P (eds) Track record: agarwood inoculation technology by FORDA. FORDA Press, Bogor, Indonesia, p. 249.
  47. Shoeb, M., Begum, S., Nahar, N. 2010. Study of an endophytic fungus from Aquilaria malaccensis Lamk. Bangladesh Journal of Pharmacology 5(1): 21-24.
  48. Sitepu, I.R., Santoso, E., Siran, S.A., Turjaman, M. 2011. Fragrant wood gaharu: when the wild can no longer provide. ITTO and FORDA, Bogor, Indonesia.
  49. Soehartono, T., Newton, A.C. 2000. Conservation and sustainable use of tropical trees in the genus Aquilaria I. Status and distribution in Indonesia. Biological Conservation 96(1): 83-94. https://doi.org/10.1016/S0006-3207(00)00055-0
  50. Staniek, A., Woerdenbag, H.J., Kayser, O. 2008. Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interaction 3(2): 75-93. https://doi.org/10.1080/17429140801886293
  51. Stierle, A., Strobel, G., Stierle, D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260 (5105): 214-216. https://doi.org/10.1126/science.8097061
  52. Strobel, G., Hess, W., Ford, E., Sidhu, R.S., Yang, X. 1996. Taxol from fungal endophytes and the issue of biodiversity. Journal of Industrial Microbiology 17(5-6): 417-423. https://doi.org/10.1007/BF01574772
  53. Takemoto, H., Ito, M., Shiraki, T., Yagura, T., Honda, G. 2008. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components. Journal of Natural Medicines 62(1): 41-46. https://doi.org/10.1007/s11418-007-0177-0
  54. Tan, R.X., Zou, W.X. 2001. Endophytes: a rich source od functional metabolites. Natural Product Reports 18(4): 448-459. https://doi.org/10.1039/b100918o
  55. Tanapichatsakul, C., Monggoot, S., Gentekaki, E., Pripdeevech, P. 2018. Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Current Microbiology 75(4): 476-483. https://doi.org/10.1007/s00284-017-1405-9
  56. Turjaman, M., Hidayat, A. 2017. Agarwood-planted tree inventory in Indonesia. In: IOP Conference Series: Earth and Environmental Science 54: 012062.
  57. Turjaman, M., Hidayat, A., Santoso, E. 2016. Development of agarwood induction tecnology using endophytic fungi. In: Mohamed R (ed) Agarwood: Science behind the fragrance. Sipnger, Singapore, pp. 57-71.
  58. Tapwal, A., Pradhan, S., Chandra, S., Rashmi. 2016. Short communication: Antimycotic activity and phytochemical screening of fungal endophytes associated with Santalum album. Nusantara Bioscience 8(1): 14-17. https://doi.org/10.13057/nusbiosci/n080104
  59. Wang, Q.H., Peng, K., Tan, L.H., Dai, H.F. 2010. Aquilarin A, a new benzenoid derivative from the fresh stem of Aquilaria sinensis. Molecules 15(6): 4011-4016. https://doi.org/10.3390/molecules15064011
  60. Wetwitayaklung, P., Thavanapong, N., Charoenteeraboon, J. 2009. Chemical constituents and antimicrobial activity of essential oil and extracts of heartwood of Aquilaria crassna obtained from water distillation and supercritical fluid carbon dioxide extraction. Silpakorn University Science and Technology Journal 3(1): 25-33.
  61. Wheeler, K.A., Hocking, A.D. 1993. Interactions among xerophilic fungi associated with dried salted fish. Journal of Applied Bacteriology 74(2): 164-169. https://doi.org/10.1111/j.1365-2672.1993.tb03010.x
  62. Yoshimi, N., Matsunaga, K., Katayama, M., Yamada, Y., Kuno, T., Qiao, Z, Hara, A., Yamahara, J., Mori, H. 2001. The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Letters 163(2): 163-170. https://doi.org/10.1016/S0304-3835(00)00678-9
  63. Zhang, Z., Wei, J., Han, X., Liang, L., Yang, Y., Meng, H., Xu, Y., Gao, Z. 2014. The sesquiterpene biosynthesis and vessel-occlusion formation in stems of Aquilaria sinensis(lour.) gilg trees induced by wounding treatments without variation of microbial communities. International Journal of Molecular Science 15(2): 23589-23603. https://doi.org/10.3390/ijms151223589
  64. Zhou, W.N., White, J.F., Soares, M.A., Torres, M.S., Zhou, Z.P., Li, H.Y. 2015. Diversity of fungi associated with plants growing in geothermal ecosystems and evaluation of their capacities to enhance thermotolerance of host plants. Journal ofPlant Interactions 10(1): 305-314. https://doi.org/10.1080/17429145.2015.1101495