• Title/Summary/Keyword: BioSignal

Search Result 669, Processing Time 0.026 seconds

Functional Mechanism of Calmodulin for Cellular Responses in Plants (식물의 세포반응에 대한 칼모듈린의 functional 작용기작 연구)

  • Cho, Eun-Kyung;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2009
  • Calcium ($Ca^{2+}$) plays pivotal roles as an intracellular second messenger in response to a variety of stimuli, including light, abiotic. and biotic stresses and hormones. $Ca^{2+}$ sensor is $Ca^{2+}$-binding protein known to function in transducing signals by activating specific targets and pathways. Among $Ca^{2+}$-binding proteins, calmodulin (CaM) has been well reported to regulate the activity of down-stream target proteins in plants and animals. Especially plants possess multiple CaM genes and many CaM target proteins, including unique protein kinases and transcription factors. Thus, plants are possible to perceive different signals from their surroundings and adapt to the changing environment. However, the function of most of CaM or CaM-related proteins have been remained uncharacterized and unknown. Hence, a better understanding of the function of these proteins will help in deciphering their roles in plant growth, development and response to environmental stimuli. This review focuses on $Ca^{2+}$-CaM messenger system, CaM-associated proteins and their role in responses to external stimuli of both abiotic and biotic stresses in plants.

Id3 mRNA Expression on Folliculogenesis in Rat Ovary (쥐 난소에서 난포 발달에 따른 Id3 mRNA의 발현)

  • Hwang, Seong-Soo;Ko, Yeoung-Gyu;Lim, Hyun-Joo;Seong, Hwan-Hoo;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • Inhibitor of DNA binding protein or inhibitor of differentiation(Id) is largely considered as positive and/or negative regulators of proliferation, differentiation, angiogeneisis, and apoptosis. The four Id genes(Id1, Id2, Id3, and Id4) were known in mammals. However, little is known about the expression and function of these genes in reproductive physiology. Among them, this study was conducted to analyze the expression pattern of Id3 mRNA on folliculogenesis in rat ovary. After PMSG administration, the ovaries were obtained at 3, 6, 12, 24, 36, and 48hrs, fixed, dehydrated, and paraffin embedded. For in situ hybridization, anti-sense and sense Id3 cRNA probes were prepared and applied to the ovarian section. The ovarian sections were coated with NTB-2 emulsion. After that, the slides were developed and counterstained with hematoxylin and eosin staining. The hybridization signal was estimated on a scale of 1+ to 4+. In oocyte, the intensity of Id3 mRNA in primordial and primary follicles was scored at ${\geq}2+$, but the intensity was less than 1+ in secondary, dominant, and preovulatory follicles. In granulosa cells, the Id3 mRNA was strongly expressed(3+ or 4+) in dominant and preovulatory follicles. Taken together, Id3 mRNA was expressed specifically at follicle stages and follicular tissue and might be closely related with follicle development.

A New Paradigm to Mitigate Osteosarcoma by Regulation of MicroRNAs and Suppression of the NF-${\kappa}B$ Signaling Cascade

  • Mongre, Raj Kumar;Sodhi, Simrinder Singh;Ghosh, Mrinmoy;Kim, Jeong Hyun;Kim, Nameun;Sharma, Neelesh;Jeong, Dong Kee
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.197-212
    • /
    • 2014
  • Osteosarcoma (OS) is one of the most common malignant primary bone tumors and NF-${\kappa}B$ appears to play a causative role, but the mechanisms are poorly understood. OS is one of the pleomorphic, highly metastasized and invasive neoplasm which is capable to generate osteoid, osteoclast and osteoblast matrix. Its high incidence has been reported in adolescent and children. Cell signal cascade is the pivotal functional mechanism acquired during the differentiation, proliferation, growth and survival of the cells in neoplasm including OS. The major limitation to the success of chemotherapy in OS is the development of multidrug resistance (MDR). Answers to all such queries might come from the knock-in experiments in which the combined approach of miRNAs with NF-${\kappa}B$ pathway is put into use. Abnormal miRNAs can modulate several epigenetical switching as a hallmark of number of diseases via different cell signaling. Studies on miRNAs have opened up the new avenues for both the diagnosis and treatment of cancers including OS. Collectively, through the present study an attempt has been made to establish a new systematic approach for the investigation of microRNAs, bio-physiological factors and their target pairs with NF-${\kappa}B$ to ameliorate oncogenesis with the "bridge between miRNAs and NF-${\kappa}B$". The application of NF-${\kappa}B$ inhibitors in combination with miRNAs is expected to result in a more efficient killing of the cancer stem cells and a slower or less likely recurrence of cancer.

Hand Gesture Recognition Regardless of Sensor Misplacement for Circular EMG Sensor Array System (원형 근전도 센서 어레이 시스템의 센서 틀어짐에 강인한 손 제스쳐 인식)

  • Joo, SeongSoo;Park, HoonKi;Kim, InYoung;Lee, JongShill
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose an algorithm that can recognize the pattern regardless of the sensor position when performing EMG pattern recognition using circular EMG system equipment. Fourteen features were extracted by using the data obtained by measuring the eight channel EMG signals of six motions for 1 second. In addition, 112 features extracted from 8 channels were analyzed to perform principal component analysis, and only the data with high influence was cut out to 8 input signals. All experiments were performed using k-NN classifier and data was verified using 5-fold cross validation. When learning data in machine learning, the results vary greatly depending on what data is learned. EMG Accuracy of 99.3% was confirmed when using the learning data used in the previous studies. However, even if the position of the sensor was changed by only 22.5 degrees, it was clearly dropped to 67.28% accuracy. The accuracy of the proposed method is 98% and the accuracy of the proposed method is about 98% even if the sensor position is changed. Using these results, it is expected that the convenience of the users using the circular EMG system can be greatly increased.

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

Comparison of peripheral vascular compliance between normal and diabetic groups using the second derivative of photoplethysmogram (PPG 2차 미분을 이용한 정상인과 당뇨병 환자의 말초혈관 탄성도 비교)

  • Kim, Sung-Woo;Lee, Ju-Hyung;Nam, Ki-Chang;Kim, Su-Chan;Cha, Eun-Jong;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.15-20
    • /
    • 2007
  • Recently the prevalence rate of diabetes in Korea has been increasing rapidly due to high growth of economy and changes in dietary lifestyle. Vascular complication is one of diabetic complications which have frequently occurred by obesity, hyperglycemia and impaired glucose metabolism. Photoplethysmogram(PPG) measured from finger and toe is very useful for evaluation of vascular aging and sclerosis level since the PPG signal represents characteristics of peripheral vascular Several researchers have reported that second derivative of the finger PPG waveform was useful to evaluate vascular compliance and developed various analysis methods for vascular compliance. However, peripheral vascular compliance study for diabetic patient was never evaluated by using second derivative of PPG. Therefore, we aimed to objectively compare and to assess normal(n=850) and diabetic(n=50) groups vascular compliance using the second derivative of PPG waveform in this study. The evaluated factors of the second derivative of PPG are 'a', 'b', 'c', 'd', 'e' and b/a rapresents vascular compliance. This study found out that when vascular compliance is decreased, the absolute value of b/a is decreased. The average vascular compliance of 50 diabetic patients with neuropathy, $-1.09{\pm}0.14$ is statistically lower than the normal group, $-0.81{\pm}0.09$ (p<0.05). In conclusion, we suggest an objective evaluation of peripheral vascular compliance for diabetic patients and prevention of vascular complication.

Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract

  • Lee, Jeong-Oog;Kim, Eunji;Kim, Ji Hye;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Kim, Juewon;Kim, Su Hwan;Park, Chanwoong;Seo, Dae Bang;Son, Young-Jin;Han, Sang Yun;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • Background: The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)-induced keratinocytes. Methods: To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide ($H_2O_2$) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results: Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine mono-phosphate response element-binding protein. Pg-C-EE also suppressed ROS generation induced by $H_2O_2$ and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion: These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element-binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects.

Smartphone Addiction Detection Based Emotion Detection Result Using Random Forest (랜덤 포레스트를 이용한 감정인식 결과를 바탕으로 스마트폰 중독군 검출)

  • Lee, Jin-Kyu;Kang, Hyeon-Woo;Kang, Hang-Bong
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.237-243
    • /
    • 2015
  • Recently, eight out of ten people have smartphone in Korea. Also, many applications of smartphone have increased. So, smartphone addiction has become a social issue. Especially, many people in smartphone addiction can't control themselves. Sometimes they don't realize that they are smartphone addiction. Many studies, mostly surveys, have been conducted to diagnose smartphone addiction, e.g. S-measure. In this paper, we suggest how to detect smartphone addiction based on ECG and Eye Gaze. We measure the signals of ECG from the Shimmer and the signals of Eye Gaze from the smart eye when the subjects see the emotional video. In addition, we extract features from the S-transform of ECG. Using Eye Gaze signals(pupil diameter, Gaze distance, Eye blinking), we extract 12 features. The classifier is trained using Random Forest. The classifiers detect the smartphone addiction using the ECG and Eye Gaze signals. We compared the detection results with S-measure results that surveyed before test. It showed 87.89% accuracy in ECG and 60.25% accuracy in Eye Gaze.

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.

Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells

  • Sanjeewa, Kalu Kapuge Asanka;Fernando, Ilekkuttige Priyan Shanura;Kim, Eun-A;Ahn, Ginnae;Jee, Youngheun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-$1{\beta}$ were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-${\kappa}B$, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS: The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells ($IC_{50}$ value: $95.7{\mu}g/mL$). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-${\alpha}$ and IL-$1{\beta}$, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-${\kappa}B$ p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. CONCLUSIONS: Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases.