• Title/Summary/Keyword: Bio-system

Search Result 3,471, Processing Time 0.027 seconds

A Study on the Vulnerability Assessment of Forest Vegetation using Regional Climate Model (지역기후모형을 이용한 산림식생의 취약성 평가에 관한 연구)

  • Kim, Jae-Uk;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.32-40
    • /
    • 2006
  • This study's objects are to suggest effective forest community-level management measures by identifying the vulnerable forest vegetation communities types to climate change through a comparative analysis with present forest communities identified and delineated in the Actual Vegetation Map. The methods of this study are to classify the climatic life zones based on the correlative climate-vegetation relationship for each forest vegetation community, the Holdridge Bio-Climate Model was employed. This study confirms relationship between forest vegetation and environmental factors using Pearson's correlation coefficient analysis. Then, the future distribution of forest vegetation are predicted derived factors and present distribution of vegetation by utilizing the multinomial logit model. The vulnerability of forest to climate change was evaluated by identifying the forest community shifts slower than the average velocity of forest moving (VFM) for woody plants, which is assumed to be 0.25 kilometers per year. The major findings in this study are as follows : First, the result of correlative analysis shows that summer precipitation, mean temperature of the coldest month, elevation, soil organic matter contents, and soil acidity (pH) are highly influencing factors to the distribution of forest vegetation. Secondly, the result of the vulnerability assessment employing the assumed velocity of forest moving for woody plants (0.25kmjyear) shows that 54.82% of the forest turned out to be vulnerable to climate change. The sub-alpine vegetations in regions around Mount Jiri and Mount Seorak are predicted to shift the dominance toward Quercus mongolica and Pinus densiflora communities. In the identified vulnerable areas centering the southern and eastern coastal regions, about 8.27% of the Pinus densiflora communities is likely to shift to sub-tropical forest communities, and 3.38% of the Quercus mongolica communities is likely to shift toward Quercus acutissima communities. In the vulnerable areas scattered throughout the country, about 8.84% of the Quercus mongolica communities is likely to shift toward Pinus densiflora communities due to the effects of climate change. The study findings concluded that challenges associated with predicting the future climate using RCM and the assessment of the future vulnerabilities of forest vegetations to climate change are significant.

Increase of isoflavones in soybean callus by Agrobacterium-mediated transformation

  • Jiang, Nan;Jeon, Eun-Hee;Pak, Jung-Hun;Ha, Tae-Joung;Baek, In-Youl;Jung, Woo-Suk;Lee, Jai-Heon;Kim, Doh-Hoon;Choi, Hong-Kyu;Cui, Zheng;Chung, Young-Soo
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.253-260
    • /
    • 2010
  • Plant secondary metabolites have always been a focus of study due to their important roles in human medicine and nutrition. We transferred the isoflavone synthase (IFS) gene into soybean [Glycine max (L.) Merr.] using the Agrobacterium-mediated transformation method in an attempt to produce transformed soybean plants which produced increased levels of the secondary metabolite, isoflavone. Although the trial to produce transgenic plant failed due to unestablished hygromycin selection, transformed callus cell lines were obtained. The induction rate and degree of callus were similar among the three cultivars tested, but light illumination positively influenced the frequency of callus formation, resulting in a callus induction rate of 74% for Kwangan, 67% for Sojin, and 73% for Duyou. Following seven to eight subcultures on selection media, the isoflavone content of the transformed callus lines were analyzed by high-performance liquid chromatography. The total amount of isoflavone in the transformed callus cell lines was three- to sixfold higher than that in control callus or seeds. Given the many positive effects of isoflavone on human health, it may be possible to adapt our transformed callus lines for industrialization through an alternative cell culture system to produce high concentrations of isoflavones.

Plasma Potential of Atmospheric Plasma Double Jets (대기압 플라즈마 이중 제트의 플라즈마 전위)

  • Kang, Han-Lim;Kim, Jung-Hyun;Kim, Hyun-Chul;Han, Sang-Ho;Cho, Gunagsup
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.312-321
    • /
    • 2012
  • The electric potential of plasma column is measured with the high voltage probe in a pair of atmospheric plasma jets operated by AC-voltage. According to the polarity of voltage applied to the electrodes, the polarity of plasma column potential has the same polarity of applied voltage. The high potential of plasma column at the side of high voltage electrode is decreased linearly along the plasma column to the ground side. Therefore, the plasma column seams to be a kind of resistor whose resistivity is a few 10s $M{\Omega}/m$. In the experiment of double-jets system, the polarity of plasma potential is verified to be the same polarity to the applied voltage. When the different voltage polarities are applied to the electrodes of double plasma jets, the attractive force is acted between two plumes at the merged plasma and the plasma potential is measured to be low as a few 10s V. When the same polarity of voltage is applied to the electrode, the repulsive force is acted and the plasma potential is measured to be high as a several 100s V at the merged plumes. In the exposure of plasma plume on the bio-substrate with the double plasma jets, the electric shock and thermal damage might be proportional to the plasma power which is the multiplication of the plasma potential and the plasma current.

Effects of Winter Cover Crop-Minor Cereal Cropping System on Weed Occurrences and Crop Growth (잡곡-피복작물 작부체계에서 잡초 발생과 작물 생장)

  • Kang, Myung-Hoon;Jeon, Seung-Ho;Lee, Se-Hun;Yoon, Seong-Tak;Hwang, Jae-Bok;Kim, Seok-Hyun;Shim, Sang-In
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.243-251
    • /
    • 2010
  • The study was conducted to evaluate the weed suppressing effects of two winter cover crops, Chinese milk vetch (CMV) and rye, in minor cereal fields in 2009. The suppressing activities of cover crops were due to the allelopathy of cover crops during weed emerging periods and competitive activity during vegetative growth of weeds. Weed suppression by cover crops were changed from 26.5 g $m^{-2}$, 0.1 g $m^{-2}$ and 0.2 g $m^{-2}$ in control, rye field and CMV field, respectively, on June 22 to 428.6 g $m^{-2}$, 1 g $m^{-2}$ and 403.9 g $m^{-2}$ in control, rye field and CMV field, respectively, on July 22. The weed dry weights were further changed to 656.3 g $m^{-2}$, 607.8 g $m^{-2}$ and 511.8 g $m^{-2}$ in control, rye field and CMV field, respectively, on August 22. The suppressing effect of cover crops also observed in minor cereals. Plant height and dry weight of sorghum was reduced to 68.7% and 33.6% of handweeding, respectively, on August 5. The reduction was recovered to 82.7% and 55.6% of control, respectively, on August 26. In addition, heading date of minor cereals was delayed by 7 days with rye.

Effect of Rheum undulatum Extract on Antioxidant Activity and Activity of Matrix Metalloproteinase-1 in Human Skin Fibroblasts (대황 추출물의 항산화 활성 및 MMP-1 저해 활성)

  • Park, Sung-Min;Lee, Gye-Won;Cho, Young-Ho
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1700-1704
    • /
    • 2008
  • Rheum undulatum L. has been commonly used as a cure for hematemesis, dropsy, and haematuria in the Oriental medicine for a long time. The main constituents of R. undulatum are chrysophanol and emodin, which are an antioxidative substance that has an anthraquinone structure. In the present study, to develop a new anti-aging agent, we examined the antioxidant activity and the inhibitory effect of the R. undulatum extract on the synthesis of MMP-1 in UVA-irradiated human dermal fibroblasts and MMP-1 activity. The R. undulatum extract was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and superoxide radicals in the xanthine/ xanthine oxidase system by a dose-dependent manner, respectively. UVA-induced MMP-1 expression was reduced about 79.5% by 1 ${\mu}g$/ml of the R. undulatum extract and also inhibited MMP-1 activity in a dose-dependent manner. In conclusion, it was observed that the R. undulatum extract has the antioxidant activity, regulation of UVA-induced MMP-1 production, and inhibition of MMP-1 activity. Therefore, these results suggest that the R. undulatum extract can be developed as a new anti-aging component of cosmetics.

Functional Mechanism of Calmodulin for Cellular Responses in Plants (식물의 세포반응에 대한 칼모듈린의 functional 작용기작 연구)

  • Cho, Eun-Kyung;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2009
  • Calcium ($Ca^{2+}$) plays pivotal roles as an intracellular second messenger in response to a variety of stimuli, including light, abiotic. and biotic stresses and hormones. $Ca^{2+}$ sensor is $Ca^{2+}$-binding protein known to function in transducing signals by activating specific targets and pathways. Among $Ca^{2+}$-binding proteins, calmodulin (CaM) has been well reported to regulate the activity of down-stream target proteins in plants and animals. Especially plants possess multiple CaM genes and many CaM target proteins, including unique protein kinases and transcription factors. Thus, plants are possible to perceive different signals from their surroundings and adapt to the changing environment. However, the function of most of CaM or CaM-related proteins have been remained uncharacterized and unknown. Hence, a better understanding of the function of these proteins will help in deciphering their roles in plant growth, development and response to environmental stimuli. This review focuses on $Ca^{2+}$-CaM messenger system, CaM-associated proteins and their role in responses to external stimuli of both abiotic and biotic stresses in plants.

Analysis on Ventilation Efficiency of Standard Duck House using Computational Fluid Dynamics (전산유체역학을 이용한 표준 오리사 설계안에 대한 환기효율성 분석)

  • Yeo, Uk-Hyeon;Jo, Ye-Seul;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Park, Se-Jun;Kim, Rack-Woo;Lee, Sang-Yeon;Lee, Seung-No;Lee, In-Bok;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.51-60
    • /
    • 2015
  • In Korea, 69.4 % of duck farms had utilized conventional plastic greenhouses. In this facilities, there are difficulties in controlling indoor environments for raising duck. High rearing density in duct farms also made the environmental control difficult resulting in getting more stressed making their immune system weaker. Therefore, a facility is needed to having structurally enough solidity and high efficiency on the environmental control. So, new design plans of duck house have recently been conducted by National Institute of Animal Science in Korea. As a study in advance to establish standard, computational fluid dynamics (CFD) was used to estimate the aerodynamic problems according to the designs by means of overall and regional ventilation efficiencies quantitatively and qualitatively. Tracer gas decay (TGD) method was used to calculate ventilation rate according to the structural characteristics of duck houses including installation of indoor circulation fan. The results showed that natural ventilation rate was averagely 164 % higher than typically designed ventilation rate, 1 AER ($min^{-1}$). Meanwhile, mechanically ventilated duck houses made 81.2 % of summer ventilation rate requirement. Therefore, it is urgent to develop a new duck house considering more structural safety as well as higher efficiency of environmental control.

Development of a Framework for Evaluating Water Quality in Estuarine Reservoir Based on a Resilience Analysis Method (회복탄력성 분석 기반 담수호 수질 평가 프레임워크 개발)

  • Hwang, Soonho;Jun, Sang Min;Kim, Kyeung;Kim, Seok Hyun;Lee, Hyunji;Kwak, Jihae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.105-119
    • /
    • 2020
  • Although there have been a lot of efforts to improve water quality in the estuarine reservoir, overall the water quality problems of the estuarine reservoirs remain. So, it is essential to establish water quality management plans under a comprehensive understanding of the environmental characteristics of the estuarine reservoir. Therefore, in this study, a resilience analysis framework for evaluating the estuarine reservoir's water quality was suggested for improving existing assessment method for water quality management plan. First, as a result of analyzing the static resilience to each scenario, it was found that from the S3 scenario in which dredging was conducted considerably, the resilience of about 30% more than the current estuarine reservoir system was restored. Second, as a result of analyzing the dynamic resilience, if cost and time are considered, there is no significant difference in robustness and resourcefulness, so it can be seen that the resilience of the estuarine reservoir can be efficiently improved by simply performing dredging up to the level of Scenario 3. Finally, as a result of comparing static and dynamic resilience, since static resilience is only presented as a single value, the differences and characteristics of the resilience capacity of the estuarine reservoir might be overlooked only by the static resilience analysis. However, in the aspect that it is possible to interpret the internal recovery capacity of the estuarine reservoir in multiple ways with various indicators (robustness, redundancy, resourcefulness, rapidity), evaluating water quality based on dynamic resilience analysis is useful.

Estimation of Optimal Ecological Flowrate of Fish in Chogang Stream (초강천에서 어류의 최적 생태유량 산정)

  • Hur, Jun Wook;Kim, Dae Hee;Kang, Hyeongsik
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In order to establish fundamental data for stream restoration and environmental flow, we investigated optimal ecological flowrate (OEF) and riverine health condition in the Chogang Stream, a tributary to Geum River, Korea. The number of fish individuals sampled in this period were 4,669 in 36 species of 9 families. The most abundant species was Korean chub (Zacco koreanus, 34.0%) followed by pale chub (Z. platypus, 22.6%) and Korean shinner (Coreoleuciscus splendidus, 13.3%). Index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) values decreased from upstream to downstream along the stream. The estimated IBI value ranged from 27.9 to 38.6 with average 32.2 out of 50, rendering the site ecologically fair to good health conditions. OEF was estimated by the physical habitat simulation system (PHABSIM) using the habitat suitability indexes (HSI) of three fish species Z. koreanus, C. splendidus and Pseudopungtungia nigra selected as indicator species. In Z. koreanus, HSI for flow velocity and water depth were estimated at 0.1 to 0.4 m/s and 0.2 to 0.4 m, respectively. In P. nigra, HSI for flow velocity, water depth and substrate size were estimated at 0.2 to 0.5 m/s and 0.4 to 0.6 m and fine gravel to cobbles, respectively. OEF values increasing from up to downstream was found to increase, weighted usable area (WUA) values increased accordingly.

Growth Characteristics of in Vitro Mass Propagated Plantlets of Ever-bearing Strawberry 'Goha' according to Aeration Rate in Bioreactor (사계성 딸기 '고하' 조직배양묘의 대량증식 시 생물반응기 내 공기주입량에 따른 생육 특성)

  • Kim, Hye-Jin;Lee, Jong-Nam;Kim, Ki-Deog;Im, Ju-Sung;Lim, Hak-Tae;Yeoung, Young-Rok
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.432-436
    • /
    • 2012
  • This study was conducted to determine the optimal aeration rate for mass propagation of ever-bearing strawberry by bioreactor culture. The aeration rate was treated in four levels: 0.1 vvm (air volume/medium volume/min), 0.2 vvm, 0.3 vvm, and 0.4 vvm. In 0.2 vvm conditions, shoot length was the longest at 9.03 cm in bioreactor culture, leave numbers were 40.4 ea and fresh weight was 6,106 mg. Plant growth rate at 0.2 vvm condition was faster than other treatments. In the aeration condition, 0.2 vvm was most effective to increase aerial part growth and to decrease medium consumption. As the culture periods increased, the fresh weight also increased rapidly. After six weeks of cultivation, shoots were emerged with 10.4 ea per plantlet, resulting in developing a complete plant. As a result, the bioreactor culture system for mass propagation of strawberry is required to continuously supply the air by 0.2 vvm speed and cultivate at least for six weeks.