• Title/Summary/Keyword: Bio-system

Search Result 3,448, Processing Time 0.047 seconds

Effects of Plant Factory Cultural Systems on Growth, Vitamin C and Amino Acid Contents, and Yield in Hydroponically Grown Peucedanum japonicum (식물공장 재배시스템에 따른 방풍나물의 생육, 비타민 C와 아미노산 함량 및 수량에 미치는 영향)

  • Lee, Guang-Jae;Heo, Jeong-Wook;Jung, Chung-Ryul;Kim, Hyun-Hwan;Yoon, Jung-Beom;Kim, Dong-Eok;Nam, Sang Young
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.281-286
    • /
    • 2015
  • This study was carried out to investigate the effects of cultural systems on growth, vitamin C, amino acid content, and yield of Peucedanum japonicum grown in artificial light plant factory. Treatments were given with Nutrient Film Technique (NFT), Medium (Perlite), and Aeroponics. Plant height was the highest in NFT system as 10.2cm, and was the shortest in Perlite as 8.9cm. Fresh leaf weight was the high in order of Perlite, NFT, and Aeroponics. Total phenolic compounds was different from cultural systems in order of Aeroponics as $117.84mg{\cdot}100g^{-1}\;GE$, NFT as $98.57mg{\cdot}100g^{-1}\;GE$ and Perlite as $74.62mg{\cdot}100g^{-1}\;GE$. Total flavonoid content of Aeroponics is $0.12mg{\cdot}100g^{-1}$ but that of NFT and Perlite treatments is not detected. Vitamin C content in Aeroponics as $108.23mg{\cdot}100g^{-1}$ was significant different from Perlite as $88.05mg{\cdot}100g^{-1}$ as and NFT $80.83mg{\cdot}100g^{-1}$. Total dietary fiber content was higher Aeroponics than Perlite and NFT. Cystein content was the highest in Aeroponics as $46.76mg{\cdot}100g^{-1}$ and methione content was the lowest in Perlite as $75.64mg{\cdot}100g^{-1}$. Mineral content of leaves was high in order of K, Ca, P and Mg in all treatments.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.

Effects of Red/Blue Light Ratio and Short-term Light Quality Conversion on Growth and Anthocyanin Contents of Baby Leaf Lettuce (적색/청색광의 비율 및 수확 전 광질변환이 어린잎상추의 생육 및 안토시아닌 함량에 미치는 영향)

  • Lee, Jun-Gu;Oh, Sang-Seok;Cha, Seon-Hwa;Jang, Yoon-Ah;Kim, Seung-Yu;Um, Young-Chul;Cheong, Seung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.351-359
    • /
    • 2010
  • To establish the optimum artificial light illumination method for baby leaf lettuce in closed plant factory system, the effects of red/blue light quality and short-term light quality conversion on growth and anthocyanin content were investigated. The growth of 'Hongha' lettuce was most favorable under red single wavelength LED light after 23 days of treatment, sequentially followed by the growth under red/blue mixed light, blue light, and fluorescent light. Total anthocyanin content in the mixed red/blue light (R57-B43) was 4.1-fold and 6.9-fold increased compared to the red LED and fluorescent light, respectively. With increasing the blue light ratio to 43%, the growth of lettuce was significantly decreased, while the relative chlorophyll content and Hunter's $a^*$ value was increased, indicating that the red/blue light ratio inversely affects on growth and anthocyanin pigment development. By changing light quality from red to red/blue mixed light source (R57-B43) for 9 days before harvest, the growth rate decreased compared to the continuous red light illumination, while the anthocyanin content dramatically increased compared to either red LED or fluorescent light. Whereas, when the light source was changed to red light, the growth rate was increased but anthocyanin content was reversely decreased. The result demonstrated that both growth and anthocyanin expression could be effectively regulated by shifting of light quality between red and red/blue mixed light source at a specific growth stage of lettuce in a plant factory.

Effects of Modified Installation Methods of Roof Ventilation Devices in the Single-span Plastic Greenhouses on Yield and Fruit Quality of Oriental Melon (단동 비닐하우스의 지붕 환기장치 설치방법 개선이 참외생육 및 과실수량에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Choi, Gyeong Lee;Lee, Seong-Chan;Lee, Jae-Han;Park, Kyoungs Sub;Lee, Jung-Sup;Bekhzod, Khoshimkhujaev
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In order to evaluate the modified installation methods of roof ventilation devices, derived from the previous experiment ('investigation into the optimum capacity of roof ventilation devices and their deployment'), the conventional and modified (improved) roof ventilation systems were installed in the single-span plastic greenhouse for growing oriental melons. The roof vents ($60{\varphi}$) and roof fans (maximum air capacity of $38m^3/min$) were installed in the spacing of 15m (FT, modified 'side vent+roof fan' ventilation) and 6m (TT, modified 'side vent+roof vent' ventilation) respectively on the roof of greenhouses for the modified roof ventilation treatments, and 20m (FC, conventional 'side vent+roof fan' ventilation) and 8m (TC, conventional 'side vent+roof vent' ventilation) for the conventional ones. The stem diameter, leaf blade lengh, petiole length, and leaf width were lower in the FT and TT treatments than those in the conventional treatments, FC and TC. Although the fruit weight and total yields were slightly lower in the FT and TT treatments, the marketable fruit ratio (%) were higher, as a result of increased fruiting ratio (%) in these treatments, than those of FC and TC. The marketable yields (kg/10a) in the FT and TT treatments were 8,391 kg/10a and 7,283 kg/10a, which were respectively 661 kg/10a and 487 kg/10a higher than those in the treatments of FC and TC. The modified installation methods of roof fan resulted in production of more female flowers and lower fruit drop ratio (%) compared to conventional meathods. In the treatment of the conventional ventilation with roof vent, the fruit weight, fruit length & width, and flesh thickness were higher than in other treatments, but there were no significant differences in the fruit width and flesh thickness among the treatments.

Effects of LED(Light Emitting Diode) Photoperiod and Light Intensity on Growth and Yield of Taraxacum coreanum Nakai in a Plant Factory (식물공장 내 광주기 및 광도가 흰민들레의 생육과 수량에 미치는 영향)

  • Hwang, Yeon Hyeon;Park, Ji Eun;Chang, Young Ho;An, Jae Uk;Yoon, Hae Suk;Hong, Kwang Pyo
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.232-239
    • /
    • 2016
  • The objective of this study was to examine the effect of photoperiod and light intensity of RBW LED (red:blue:white = 2:1:1) on the growth of Taraxacum coreanum Nakai in a fully artificial light type plant factory. 3 photoperiods and 4 light intensity were used respectively in a fully artificial light type plant production system. Plants were cultured with three photoperiods and four light intensity regimes (conditions) for 270 and 120 days, respectively, using nutrient film technique (NFT) or aeroponics culture methods. For each photoperiod, the total leaves per plant harvested 8 times in all cultivation period was 224 in the 16/8(day/light) photoperiod that had no significant difference from 220 in the 12/12 photoperiod and the lowest number of leaves was 151 occurred in the 8/16 photoperiod, which means that the longer photoperiod, the more leaves harvest. Total fresh weight of above ground was the high in order of in 16/8 photoperiod as 125g, 12/12 photoperiod as 91g, 8/16 photoperiod as 56g. For each light intensity, the total leaves per plant harvested 4 times in all cultivation period was the great in order of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 123, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 107, $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 95, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 56 which was the smallest number of total leaves harvest. Total fresh weight of above ground per plant was the high in order of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 43.6g, $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 34.6g, $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 32.2g, $50{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as 18.2g. From these results, it was concluded that photoperiod of 16/8 and light intensity at $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ can be used as the light condition of RBW LED (red:blue:white = 2:1:1) for optimal growth of Taraxacum coreanum Nakai in a fully artificial light type plant factory.

Improvement of Heat Pump Heating Performance by Selective Heat Storage Using Air Heat of Inside and Outside Greenhouse (온실 내외부 공기열의 선택적 축열에 의한 히트펌프 난방성능 개선)

  • Kwon, Jin Kyung;Kim, Seung Hee;Jeon, Jong Gil;Kang, Youn Koo;Jang, Kab Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • In this study, the design and performance test of the air to water heat pump capable of producing hot water for greenhouse heating by using the surplus solar heat inside the greenhouse and the air heat outside greenhouse as the selective heat source were conducted. The heat storage operations using the surplus solar heat and the outside air heat were designed to be switched according to the setting temperature of the greenhouse in consideration of the optimum temperature range of the crop. In the developed system, it was possible to automatically control the switching of heat storage operation, heating and ventilation by setting 12 reference temperatures on the control panel. In the selective heat storage operation with the surplus solar heat and outside air heat, the temperature of thermal storage tank was controlled variably from $35^{\circ}C$ to $52^{\circ}C$ according to the heat storage rate and heating load. The heat storage operation times using the surplus solar heat and outside air heat were 23.1% and 30.7% of the experimental time respectively and the heat pump pause time was 46.2%. COP(coefficient of performance) of the heat pump of the heat storage operation using the surplus solar heat and outside air heat were 3.83 and 2.77 respectively and was 3.24 for whole selective heat storage operation. For the comparative experiment, the heat storage operation using the outside air heat only was performed under the condition that the temperature of the thermal storage tank was controlled constantly from 50 to $52^{\circ}C$, and COP was analyzed to be 2.33. As a result, it was confirmed that the COP of the heat storage operation using the surplus solar heat and outside air heat as selective heat source and the variable temperature control of the thermal storage tank was 39% higher than that of the general heat storage operation using the outside air heat only and the constant temperature control of the thermal storage tank.

Analysis of Air Temperature and Humidity Distributions and Energy Consumptions according to Use of Air Circulation Fans in a Single-span Greenhouse (단동온실 내 공기순환팬 사용에 따른 온습도 및 에너지소비량 비교 분석)

  • Lee, Tae Seok;Kang, Geum Choon;Kim, Hyung Kweon;Moon, Jong Pil;Oh, Sung Sik;Kwon, Jin Kyung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • The aim of this study was to compare and analyze air temperature and humidity distribution and energy consumptions according to using air circulation fans in single-span greenhouses. The greenhouses located in Cheongnam-myeon, Cheongyang-gun, Chungcheongnam-do, Korea. There were cherry tomatoes in the greenhouses and the size of greenhouses was as follows;ridge height : 3.2 m, wide : 6 m, length : 95 m. The heating system was composed of a hot-water boiler and 6 FCUs(Fan Coil Unit)-4 FCUs were on bottom with duct and 2 FCUs were installed at 2.0 m. A total of 18 air circulation fans(impeller's diameter : 230 mm) were bilaterally arranged in 2 rows in the experimental greenhouse. The sensors for measuring air temperature and humidity were located at a quarter and three quarters of a length. The height of sensors were 0.8 m, 1.8 m. To calculate energy consumption in greenhouses, water temperature at inlet and outlet in a water pump, volume of water were measured. Form February 3rd to March 23th, temperature, humidity and energy consumptions were measured during heating time(6pm~7am). In a greenhouse without fans, the average differences of temperature and humidity were $0.75^{\circ}C$, 2.31%, respectively. The operation of fans showed their differences to $0.42^{\circ}C$, 1.8%. The standard deviation of temperature and humidity between measuring points in the greenhouse with fans was lower than the greenhouse without fans. Total energy consumptions in a greenhouse without fans were 4,673 kWh. In the greenhouse with fans, the total energy consumptions were 4,009 kWh. The energy consumptions in a greenhouse with fans 14.2% were less than the greenhouse without fans. Therefore, air circulation makes temperature and humidity uniform and saves energy consumptions for heating.

Vine Growth and Fruit Characteristics of 'Jinok' and 'Campbell Early' Grape as Influenced by Cropping System (재배작형에 따른 포도 '진옥'과 '캠벨얼리'의 수체생육 및 과실 특성 분석)

  • Cheon, Mi Geon;Kim, Yeong Bong;Lee, Sun Yeong;Hong, Gwang Pyo;Jung, Sung Min;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • This study was conducted for the domestic new cultivar to expand cultivation area and sustainable production. The new domestic cultivar, 'Jinok' and control cultivar, 'Campbell Early', had been investigated on vine growth and fruit quality by different cultivating conditions as open field, rain shelter and unheated plastic house. The growth period of 'Jinok' was faster than 'Campbell Early'. The harvesting date of 'Jinok' was on 13th of Aug. faster than 'Campbell Early' which was on 17th of Aug., and it was on 25th and 29th of Aug. for 'Jinok' and 'Campbell Early' on field cultivation, respectively. The growing length and width of new shoots were similar among the cropping systems. In the result of fruit characteristic evaluation, the soluble solids content of the 'Jinok' and 'Campbell Early' cultivating on the unheated plastic house were $15.4^{\circ}Brix$ and $15.9^{\circ}Brix$, respectively. In the open field condition, those were $15.9^{\circ}Brix$ and $15.8^{\circ}Brix$, respectively. The titratable acidity and chromaticity were similar among the treatments. In the appearance of past and disease, Phomopsis blight was occurred on mid of June and in the end of cultivation period on about early Aug., the damage by Phomopsis blight was the lowest about 14% in the unheated plastic house cultivation on the 'Jinok' cultivar and it was 39% in the open field condition. However, in the open filed cultivation for 'Campbell Early', Phomopsis blight was highly occurred about 49%. During this period, or the end of cultivation, it is necessary for the intensive control.

Effects of Transplanting and Runner Releasing Times of Mother Plants for the Control of Daughter Plant Production Time in Cutting Strawberries (딸기 삽목 시 자묘 생산시기 조절을 위한 어미묘의 정식시기 및 런너 방임시기에 따른 효과)

  • Lim, Mi Young;Jeong, Ho Jeong;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • This study was carried out to evaluate the yield of cuttings according to the planting and runner releasing times of mother plants in order to raise the cutting seedlings of raising seedling period 75 days or more needed for forcing culture of strawberries to be transplanted into the field around the 15th of September. Three domestic cultivars of 'Maehyang', 'Jukhyang', and 'Kuemsil' were tested. For experiment 1 to determine the yield of cuttings with the change of transplanting time, the mother plant were planted on February 28, March 20, and April 9 in 20 days intervals, and the cuttings were collected two to three times from June 4 to July 1. Experiment 2 was conducted to investigate the yield of cuttings depending on the runner releasing time, the runners were released in three intervals of 20 days, 40 days, and 60 days after planting the mother plant on March 5, and the cutting were collected once to three times from May 29 to June 26. From the comparisons of cutting yield according to the transplanting time of mother plants, February 28 treatment was more 9~25% and 114~165% for each cultivar than March 20 and April 9, respectively (Experiment 1). The yield of cuttings with releasing time 20 days after planting the mother plants had higher by 60~77% and 104~176% for each cultivar than 40 days and 60 days, respectively (Experiment 2). From these results, in case of propagating the seedlings from cuttings needed for field planting around September 15, early planting around in the latter part of February is the best for cuttings yield. In addition, releasing after the removal of the runners produced from mother plants by 20 days after planting gives an advantage over higher yield of cuttings. Consequently, this study suggest to apply an efficient raising seedling system for labor saving and quality improvement in raising seedlings of three strawberry cultivars in Korea.

Effects of Nutrient Strength and Light Intensity on Nutrient Uptake and Growth of Young Kalanchoe Plants (Kalanchoe blossfeldiana 'Marlene') at Seedling Stage (배양액의 농도와 광강도가 단일처리전 칼랑코에 유묘의 양분흡수와 생육에 미치는 영향)

  • Lu, Yin-Ji;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • It is very important to make shorter and healthier pot plants with increased numbers of branch at a growing stage before short-day exposure. Especially light and nutrient conditions directly affect the growth and quality of the plants as described above. In this study, the effects of nutrient strength and light intensity on the nutrient uptake and growth of young Kalanchoe plants (Kalanchoe blossfeldiana 'Marlene') during this growth stage were investigated. The plants were grown under two radiation integral (15.8 and 7.9 $mol{\cdot}m^{-2}{\cdot}d^{-1}$, PPF) and three EC (0.8, 1.6 and 2.4 $dS{\cdot}m^{-1}$) conditions. Leaf area, fresh weight, dry weight and number of branch were higher at a higher PPF, and this tendency was more evident at an EC above 1.6$dS{\cdot}m^{-1}$. The plants became higher at a lower PPF. When the EC was at 0.8 $dS{\cdot}m^{-1}$, the plants did not grow so healthy regardless of PPF conditions. EC decrement in the nutrient solution was increased with increase of nutrient strength. With growth stage, the nutrient uptake was increased with increases of nutrient strength and PPF. At a higher PPF, $NO_3-N,\;K^{+}\;and\;Ca^{2+}$ were much more absorbed, and especially the uptake of $K^{+}$ was 1.1 to 1.5 times greater than that or $NO_3-N$. From the results, the EC needed above 1.6 $dS{\cdot}m^{-1}$ during the seedling stage in order to make more healthy Kalanchoe plants having more leaf area, fresh weight, dry weight and number of branches under adequate light conditions.