• Title/Summary/Keyword: Bio-signal measurement system

Search Result 96, Processing Time 0.027 seconds

Design and Implementation of Biological Signal Measurement Algorithm for Remote Patient Monitoring based on IoT (IoT기반 원격환자모니터링을 위한 생체신호 측정 알고리즘 설계 및 구현)

  • Jung, Ae-Ran;You, Yong-Min;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.957-966
    • /
    • 2018
  • Recently, the demand for remote patient monitoring based on IoT has been increased due to aging population and an increase in single-person household. A non-contact biological signal measurement system using multiple IR-UWB radars for remote patient monitoring is proposed in this paper. To reduce error signals, a multilayer Subtraction algorithm is applied because when the background subtraction algorithm was applied to the biological signal processing, errors occurred such as voltage noise and staircase phenomenon. Therefore, a multilayer background subtraction algorithm is applied to reduce error occurrence. The multilayer background subtraction algorithm extracts the signal by calculating the amount of change between the previous clutter and the current clutter. In this study, the SVD algorithm is used. We applied the improved multilayer background subtraction algorithm to biological signal measurement and computed the respiration rate through Fast Fourier Transform (FFT). To verify the proposed system using IR-UWB radars and multilayer background subtraction algorithm, the respiration rate was measured. The validity of this study was verified by obtaining a precision of 97.36% as a result of a control experiment with Neulog's attachment type breathing apparatus. The implemented algorithm improves the inconvenience of the existing contact wearable method.

An Efficient Smart Indoor Emotional Lighting Control System based on Android Platform using Biological Signal (생체신호를 이용한 안드로이드 플랫폼 기반의 효율적인 스마트 실내 감성조명 제어 시스템)

  • Yun, Su-Jeong;Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.199-207
    • /
    • 2016
  • In this paper, we propose efficient smart indoor emotional lighting control system based on android platform using the biological signal. The proposed smart indoor smart emotional lighting control system were configured as the biological signal measurement device and removable smart wall pad, lighting driver, luminaire. The control system was extracts the emotional language by measured the biological signal, and it was transmitted a control signal to each lighting driver using a bluetooth in the wall pad. The lighting driver were designed to control the lighting device through an expansion board by collected control signal and the illuminance information the surrounding. In this case, the wall pad can be selecting of manual control and the bio signal mode by that indoor emotional lighting control algorithms, and it was implemented the control program that possible to partial control by selecting the wanted light. Experiment results of the proposed smart indoor emotional lighting control system, it were possible to the optional control about the luminaire of required area, and the manual control by to adjustable of color temperature with that the efficiently adjustable of lighting by to biological signal and emotional language. Therefore, were possible to effective control for improvement of concentration and business capability of indoor space business conduct by controlling the color and brightness that is appropriate for your situation. And, was reduced power consumption and dimmer voltage, lighting-current than the existing-emotional lighting control system.

In vivo ESR measurement of free radical reaction in living mice

  • Han, Jin-Yi;Hideo Utsumi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.6-7
    • /
    • 2000
  • Recently, free radicals such as active oxygen species, nitric oxide, etc are believed to be one of the key substances in physiological and pathological, toxicological phenomena, and oxidative damages, and all organism have defencing system against such as free radicals. Formation and extinction of free radicals may be regulated through bio-redox system, in which various enzymes and compounds should be involved in very complicated manner. Thus, direct and non-invasive measurement of in vivo free radical reactions with living animals must be essential to understand the role of free radicals in pathophysiological phenomena. Electron spin resonance spectroscopy (ESR) is very selective and sensitive technique to detect free radicals, but a conventional ESR spectrometer has large detect in application to living animals, since high frequent microwave is absorbed with water, resulting in generation of high fever in living body. In order to estimate in vivo free radical reactions in living whole animals, we develop in vivo ESR-CT technique using nitroxide radicals as spin probes. Nitroxide radicals and their reduced forms, hydroxylamines, are known to interact with various redox systems. We found that! ! the signal decay due to reduction of nitroxyl radicals is influenced by aging, inspired oxygen concentration, ischemia-referfusion injury, radiation, etc. In the present paper, I will introduce in vivo ESR technique and my laboratory recent results concerning non-invasive evaluation of free radical reactions in living mice.

  • PDF

Development of Quantification Method for Bioluminescence Imaging (발광영상에 대한 정량화 방법 개발)

  • Kim, Hyeon-Sik;Choi, Eun-Seo;Tak, Yoon-O;Choi, Heung-Kook;Lee, Ju-Young;Min, Jung-Joon;Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.451-458
    • /
    • 2009
  • Purpose: Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. Materials and Methods: We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. Results: We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. Conclusion: The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipments with presenting linear response behavior of constant light emitting sources to measurement time.

Analysis of Galvanic Skin Response Signal for High-Arousal Negative Emotion Using Discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 고각성 부정 감성의 GSR 신호 분석)

  • Lim, Hyun-Jun;Yoo, Sun-Kook;Jang, Won Seuk
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.13-22
    • /
    • 2017
  • Emotion has a direct influence such as decision-making, perception, etc. and plays an important role in human life. For the convenient and accurate recognition of high-arousal negative emotion, the purpose of this paper is to design an algorithm for analysis using the bio-signal. In this study, after two emotional induction using the 'normal' / 'fear' emotion types of videos, we measured the Galvanic Skin Response (GSR) signal which is the simple of bio-signals. Then, by decomposing Tonic component and Phasic component in the measured GSR and decomposing Skin Conductance Very Slow Response (SCVSR) and Skin Conductance Slow Response (SCSR) in the Phasic component associated with emotional stimulation, extracting the major features of the components for an accurate analysis, we used a discrete wavelet transform with excellent time-frequency localization characteristics, not the method used previously. The extracted features are maximum value of Phasic component, amplitude of Phasic component, zero crossing rate of SCVSR and zero crossing rate of SCSR for distinguishing high-arousal negative emotion. As results, the case of high-arousal negative emotion exhibited higher value than the case of low-arousal normal emotion in all 4 of the features, and the more significant difference between the two emotion was found statistically than the previous analysis method. Accordingly, the results of this study indicate that the GSR may be a useful indicator for a high-arousal negative emotion measurement and contribute to the development of the emotional real-time rating system using the GSR.

Biosignal-based Driver's Emotional Response Monitoring System: Part 1. System Implementation (생체 신호 측정 기반 운전자 상태 모니터링 시스템: 1부 시스템 구현)

  • Kim, Beom-Joon;Lee, Boon-Giin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.677-684
    • /
    • 2018
  • Recently, negative emotional responses by drivers are a growing problem, which leads to not only a traffic accident but a crime so called 'road rage' in countries with heavy traffics including South Korea. Under such a circumstance, measuring stress- and fatigue-induced emotional responses by means of wireless communication and a wearable system would be useful. The purpose of this study is to implement a system that measures various signals from a driver, derives and monitors his emotional responses from the measurements and verify its derivations with reliability. This paper, as a first part of the research, describes how the system has been implemented with experimental methods.

Technological Issues for Body Information Monitoring (생체정보 모니터링을 위한 기술적 이슈)

  • Park, Jong-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.105-114
    • /
    • 2013
  • Expansion and growth of body information monitoring service based on WBAN technology speeds up technological evolution in bio-signal detection and measurement, real time monitoring of vital sign and telemedicine control. It is essential for taking action against such technological evolution that newest technology trend and standardization issue should be included in designing and materializing body-information monitoring system strategically to secure preceding technology and to preoccupy market. This paper investigates and analyzes technological trend & issues, and suggests task to take action technologically.

Development of Smart Healthcare Scheduling Monitoring System for Elderly Health Care

  • Cho, Sooyong;Lee, Sang Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.51-59
    • /
    • 2018
  • Health care has attracted a lot of attention, recently due to an increase in life expectancy and interest in health. Various biometric data of the user are collected by using the air pressure sensor, gyro sensor, acceleration sensor, and heart rate sensor to perform the Smart Health Care Activity Tracker function. Basically, smartphone application is made and tested for biometric data collection, but the Arduino platform and bio-signal measurement sensor are used to confirm the accuracy of the measured value of the smartphone. Use the Google Maps API to set user goals and provide guidance on the location of the user and the points the user wants. Also, the basic configuration of the main UI is composed of the screen of the camera, and it is possible for the user to confirm the forward while using the application, so that accident prevention is possible.

Measurement of Blood Oxygen Saturation System and LavVIEW Program Using Broad-band Light Source (광대역 광원을 이용한 혈중 산소포화도의 측정 시스템 및 랩뷰 프로그램)

  • Cui, Jin Shi;Shin, Dong Ho;Song, Chul Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.128-137
    • /
    • 2015
  • Blood oxygen saturation ($SpO_2$) is so important to be called bio-signal of the fifth. The measurement of blood oxygen saturation based on broad-ban light source has advantages of simple testing facility and easy understanding. This paper proposes a LabVIEW program which measures blood oxygen saturation based on broad-band light source. It combines LabVIEW and MATLAB, utilizing different light absorptions of oxyhemoglobin and deoxyhemoglobin in the visual wavelength range of 450nm-750nm to determine blood oxygen saturation. In order to improve accuracy through reducing the impact of hand shaking, the probe is fixed to the motor stage and then move a constant distance between the probe and the sample to be measured. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Quantitative Evaluation of the Stress Urinary Incontinence using the Contraction pressure measurement at the Pelvic Floor Muscle (골반저근의 수축압력 측정을 이용한 복압성요실금의 정량적 평가)

  • Min, H.K.;Noh, S.C.;Kwon, J.W.;Min, K.S.;Choi, H.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2007
  • In this study, diagnostic algorithm was suggested to diagnose quantitatively the degree of the stress urinary incontinence. The bio-signal measurement system was developed to measure the contraction pressure of the pelvic floor muscle and diagnostic parameters were drawn out by analyzing the contraction pressure data. Statistical evaluations were done to classify the diagnositc parameters by order that relationship is high. The diagnostic algorithm that was able to diagnose degree of the urinary incontinence as quantitatively was realized from the high relationship parameters.

  • PDF