DOI QR코드

DOI QR Code

Biosignal-based Driver's Emotional Response Monitoring System: Part 1. System Implementation

생체 신호 측정 기반 운전자 상태 모니터링 시스템: 1부 시스템 구현

  • 김범준 (계명대학교 전자전기공학부) ;
  • 이분진 (계명대학교 전자전기공학부)
  • Received : 2018.05.03
  • Accepted : 2018.06.15
  • Published : 2018.06.30

Abstract

Recently, negative emotional responses by drivers are a growing problem, which leads to not only a traffic accident but a crime so called 'road rage' in countries with heavy traffics including South Korea. Under such a circumstance, measuring stress- and fatigue-induced emotional responses by means of wireless communication and a wearable system would be useful. The purpose of this study is to implement a system that measures various signals from a driver, derives and monitors his emotional responses from the measurements and verify its derivations with reliability. This paper, as a first part of the research, describes how the system has been implemented with experimental methods.

최근 운전 도중 운전자가 가지는 부정적인 감정 상태로 인한 문제점이 커지고 있으며 특히 우리나라 포함 교통이 혼잡한 나라에서는 교통사고뿐만 아니라 소위 '분노 운전'이라는 범죄 행위로 이어지는 사례가 잦아지고 있다. 이와 같은 상황에서 무선 통신 및 웨어러블 기술을 활용하여 스트레스나 피로로 인한 운전자의 감정 상태를 측정할 수 있다면 매우 유용할 수 있다. 본 연구는 운전자의 다양한 생체 신호를 측정 및 관찰할 수 있는 시스템을 구현하고 측정 결과 분석을 통하여 운전자의 감정 상태를 판단하고 관찰하며 예측된 운전자의 감정 상태에 대한 신뢰성을 높이기 위한 것이다. 본 논문에서는 이 연구의 전반부로서 현재 개발이 완료된 시스템 구현 과정과 실험 방법에 대해서 소개하고자 한다.

Keywords

References

  1. R. S. Lazarus, "From psychological stress to the emotions: A history of changing outlooks," Annu. Rev. Psychol., vol. 44, no. 1, pp. 1-21, 1993. https://doi.org/10.1146/annurev.ps.44.020193.000245
  2. "Road traffic accidents in Korea 2012," Traffic Accident Anal. Center, Seoul, South Korea, Tech. Rep. 2013-0246-083, Sept. 2013.
  3. S. Jansen, A. Westphal, and A. Riener, "Detection of drivers incidental and integral affect using physiological measures," in Proc. 5th Int. Conf. Automotive User Interfaces Interactive Veh. Appl., Eindhoven, The Netherlands, Oct. 2013, pp. 97-98.
  4. F. A. Machot, A. H. Mosa, A. Fasih, C. Schwarzlmuller, M. Ali, and K. Kamakya, "A novel real-time demotion detection for advanced driver assistance systems," Auton. Syst., Develop. Trends, vol. 391, no. 1, pp. 267- 276, Nov. 2011.
  5. C. M. Jones and I. M. Jonsson, "Detecting emotions in conversations between driver and in-car information systems," Affect. Comput. Intell. Interaction, vol. 3784, no. 1, pp. 780-787, 2005.
  6. D. Isa, G. C. Chieh, and R. Arelhi, "Abnormal driver behavior detection using parallel CPU and GPU algorithm through facial expression, thermal imaging, and heart rate data fusion," Int. J. Eng. Innov. Technol., vol. 2, no. 3, pp. 53-64, Sep. 2012.
  7. M. Gutmann, P. Grausberg, and K. Kyamakya, "Detecting human driver's physiological stress and emotions using sophisticated one-person cockpit vehicle simulator," in Proc. Inf. Technol. Innov. Business Conf., Kharkiv, Ukraine, Oct. 2015, pp. 15-18.
  8. T. Bae, J. Kang, J. Park, B. Kim, and B. Lee, "Improving Safety of Biycle Driver System using Arduino," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 4, Aug. 2017, pp. 525-531. https://doi.org/10.13067/JKIECS.2017.12.4.525
  9. H. Park, Y. Ko, S. Lee, J. Jang, B. Lee, "Walking Assistance System for Visually Impaired People using Vultiple sensors," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 4, Aug. 2017, pp. 533-538. https://doi.org/10.13067/JKIECS.2017.12.4.533
  10. G. Li, B. L. Lee, and W. Y. Chung, "Smartwatch-based wearable EEG system for driver drowsiness detection," IEEE Sensors J., vol. 15, no. 12, pp. 7169-7180, Sep. 2015. https://doi.org/10.1109/JSEN.2015.2473679
  11. K. Kim and H. Wei, "Development of a Face Detection and Recognition System Using a RaspberryPi," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 5, Oct. 2017, pp. 859-864. https://doi.org/10.13067/JKIECS.2017.12.5.859