• Title/Summary/Keyword: Bio-sensor System

Search Result 293, Processing Time 0.022 seconds

Development of Bio-sensor-Based Feature Extraction and Emotion Recognition Model (바이오센서 기반 특징 추출 기법 및 감정 인식 모델 개발)

  • Cho, Ye Ri;Pae, Dong Sung;Lee, Yun Kyu;Ahn, Woo Jin;Lim, Myo Taeg;Kang, Tae Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1496-1505
    • /
    • 2018
  • The technology of emotion recognition is necessary for human computer interaction communication. There are many cases where one cannot communicate without considering one's emotion. As such, emotional recognition technology is an essential element in the field of communication. n this regard, it is highly utilized in various fields. Various bio-sensor sensors are used for human emotional recognition and can be used to measure emotions. This paper proposes a system for recognizing human emotions using two physiological sensors. For emotional classification, two-dimensional Russell's emotional model was used, and a method of classification based on personality was proposed by extracting sensor-specific characteristics. In addition, the emotional model was divided into four emotions using the Support Vector Machine classification algorithm. Finally, the proposed emotional recognition system was evaluated through a practical experiment.

A portable electronic nose (E-Nose) system using PDA device (개인 휴대 단말기 (PDA)를 기반으로 한 휴대용 E-Nose의 개발)

  • Yang, Yoon-Seok;Kim, Yong-Shin;Ha, Seung-Chul;Kim, Yong-Jun;Cho, Seong-Mok;Pyo, Hyeon-Bong;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

Ubiquitous Sensor Network System for Monitoring the Bio-information and the Emergency of the Elderly at Silver Town (실버타운에서 고령자 생체 및 응급상황 모니터링용 유비쿼터스 센서 네트워크 시스템)

  • Choi, Seong-Ho;Yu, Yun-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.227-228
    • /
    • 2008
  • 노인들이 주거하는 실버타운에는 노인들의 건강 관리가 가장 중요하다. 이러한 노인들은 갑작스럽게 생체 신호의 변화나 건강 상태가 나빠질 수 있다. 대부분의 실버타운은 의료시설 외의 다른 장소에서 노인들의 건강 상태를 확인할 수 없다. 따라서 본 논문에서는 실버타운에서 노인들의 생체 정보 및 응급상황을 언제, 어디서나 모니터링 할 수 있는 USN(Ubiquitous Sensor Network)시스템을 설계 및 구현한 연구를 소개한다. 또한, 실버타운 환경을 고려한 라우팅 알고리즘을 소개한다.

  • PDF

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Development of BioRobot System Based on Mobile Agent for Clinical Laboratory (임상병리검사를 위한 모바일 에이전트 기반의 바이오로봇 시스템 개발)

  • Choi, Byung-June;Jin, Sung-Moon;Sin, Seung-Hun;Koo, Ja-Choon;Kim, Min-Chul;Kim, Jin-Hyun;Son, Woong-Hee;Ahn, Ki-Tak;Chung, Wan-Kyun;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.317-326
    • /
    • 2007
  • Recently, robotic automation in clinical laboratory becomes of keen interest as a fusion of bio and robotic technology. In this paper, we present a new robotic platform for clinical tests suitable for small or medium sized laboratories using mobile robots. The mobile robot called Mobile Agent is designed as transfer system of blood samples, reagents, microplates, and any instruments. Also, the developed mobile agent can perform diverse tests simultaneously based on its cooperative and distributed ability. The driving circuits for the mobile agent are embedded in the robot, and each mobile agent communicates with other agents by using Bluetooth communication. The RFID system is used to recognize patient information. Also, the magnetic hall sensor is embedded to remove and compensate the cumulated error of locomotion at the bottom of mobile agent. The proposed mobile agent can be easily used for various applications because it is designed to be compatible with general software development tools. The Mobile agents are manufactured, and feasibility of the robot and localization of the agents using magnetic hall sensor are validated by preliminary experiments.

  • PDF

Alarm System for Sudden Infant Death using Bio-Signals (생체 신호를 활용한 영아 돌연사 알람 시스템)

  • Yun, Su-Jeong;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.197-202
    • /
    • 2016
  • In this paper, a danger signal to tell caregivers when a dangerous situation occurs, the bio-signal analysis in infants to prevent sudden infant death sudden infant death propose a monitoring system. The Sudden infant death (SID) refers to a healthy baby is unexplained deaths between birth year in the month. Sudden infant death proposed monitoring system is composed of a processor unit and the monitoring and alarm part for processing part and the biological signal sensing biological signals. Using the PPG sensor to sense the bio-signal and the processor unit the signal obtained through the sensor by removing the motion artifact was able to alarm and monitoring the parent.The proposed system will send the alarm to monitoring and alerting caregivers if the risk situation by analyzing the heart rate of the infant. With the actual implementation of the system to evaluate the performance of the monitoring system.

Bio-Monitoring System Using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) -I. Detecting Abnormal Shell Valve Movements Under Low Salinity Using a Hall Element Sensor (굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링시스템 연구 -I. 홀 소자를 이용한 저염분하에서 비정상적인 패각운동 측정)

  • Oh, Seok Jin;Lee, Jun-Ho;Kim, Seok-Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.138-142
    • /
    • 2013
  • As an early warning system to reduce the damage of aquacultured mollusks due to low salinity water, we investigated the possibility of a biomonitoring system measuring the shell valve movement (SVM) of Pacific oyster (Crassostrea gigas) by using the Hall element sensor. In high salinity water of 27 psu, SVMs of Pacific oyster showed spikes which mean a relatively fast closing condition after opened condition of average 10-15 mm, and then the SVM showed back to opening condition slower than closing speed. In water salinity of 20-27 psu, the SVMs were similar to that of 27 psu. However, below 17 psu, it showed abnormal valve movements such as spending more time for shell closure. In 10 psu, we could not detected SVMs due to closed condition during experiment periods. Thus, if we quickly detect abnormal environmental variations like low salinity using bio-monitoring of SVM, it may be contribute to increased productivity by dramatically reducing damages in aquaculture.

Multi-access Monitoring System for Biological Signal Collection (생체신호수집을 위한 다중접속 모니터링 시스템)

  • Kim, Tae-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.145-148
    • /
    • 2020
  • Wearable computing is growing rapidly as research on body area communication network using wireless sensor network technology is actively conducted. In particular, there is an increasing interest in smart clothing measuring unrestrained and insensitive bio signals, and research is being actively conducted. However, research on smart clothing is mainly based on 1: 1 wireless communication. In this paper, we propose a multi-access monitoring system that can measure bio-signals by multiple users wearing smart clothing. The proposed system consists of wireless access device, multiple access control server and monitoring system. It also provides a service that allows multiple users to monitor and measure bio signals at the same time.

Cattle Shed Management System Based on Wireless Sensor Network with Bio and Environmental Sensors (바이오 및 환경센서를 활용한 무선센서 네트워크 기반의 축사관리 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin;Lee, Jong-Dae;Choi, Sun-O
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.573-586
    • /
    • 2013
  • Recently, the research, utilizing bio and environment sensors in agricultural and cattle industries, are drawing attention among the various IT convergence technologies. Among such research IT convergence techniques which aim to improve the quality of cattle industry management are necessary in particular. Real-time monitoring of the cattles health condition, identification of the cause of the diseases and timely response to such epidemic based on IT convergence techniques are among them. In order to achieve the better management of cattle industry, we propose a cattles management system which based on various bio environment sensors and wireless network technologies. The system consists of wireless environmental sensor data acquisition nodes, sensor data processing nodes, the gateway and the server. The proposed system is able to actively monitor the cattle field, to respond quickly in the case of massive cattle diseases and to control the environment of the cattle fields. We believe the proposed system will demonstrate the successful application of IT technologies to an applied field such as farming industries because of real-time crisis management capability in case of epidemic and optimal management of cattle industry.