• Title/Summary/Keyword: Bio-reduction

Search Result 747, Processing Time 0.034 seconds

Optimization of air scouring for an effective control of membrane fouling in submerged MBR (침지형 MBR 공정의 공기 세정 최적화를 통한 효율적 막 오염 제어)

  • Kim, Jun-Young;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2016
  • A membrane module including grid was designed and introduced to MBR (membrane bio-reactor) for the purpose of better control of membrane fouling. It could be anticipated that the grid enhances the shear force of fluid-air mixture into the membrane surface by even-distributing the fluid-air to the membrane module. As MLSS concentration, packing density which is expressed in the ratio of the housing and the cross-sectional area of membrane fibers ($A_m/A_t$) and air-flow rate were changed, membrane foulings were checked by monitoring fouling resistances. The total fouling resistance ($R_c+R_f$) without grid installation (i.e., control) was $2.13{\times}10^{12}m^{-1}$, whereas it was reduced to $1.69{\times}10^{12}m^{-1}$ after the grid was installed. Regardless of the grid installation, the $R_c+R_f$ increased as the packing density increased from 0.09 to 0.28, however, the increment of resistance for the grid installation was less than that of the control. Increase in the air flow rate did not always guarantee the reduction of fouling resistance, indicating that the higher air flow rate can partially de-flocculate the activated sludge flocs, which led to severer membrane fouling. Consequently, installation of grids inside the housing have brought a beneficial effect on membrane fouling and optimum air flow rate is important to keep the membrane lowering fouling.

Ginsenoside Contents and Hypocholesterolemic Effects of a By-Product in Ginseng Radix (인삼부산물 추출액의 ginsenosides 함량 및 고지방 식이에 있어 혈청 콜레스테롤 농도 개선에 미치는 효과)

  • Sihn, Eon-Hwan;Park, Sung-Jin;Han, Jong-Hyun;Park, Sung-Hye
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.459-465
    • /
    • 2005
  • This study was conducted to investigate the application possibility of leaf and stem extract(LSE) extracted from mixture of leaf and stem of ginseng radix (Panax Ginseng C.A. Meyer). We conducted analysis of the ginsenoside content by HPLC. Also we investigate the effects of the LSE on the reduction of serum lipid and improvement of blood parameters in rats fed high fat diet 5 weeks. We examined by analyzing the serum total cholesterol, HDL-cholesterol, LDL-cholesterol, triglyceride and atherogenic index and hematological datas and serum metabolic variables. Sprague-Dawley rat weigh $150\;g\;{\pm}\;15\;g$, were ramdomly assigned to 4 groups, basal diet only(BDG), high fat diet weithout LSE(FDCG), high fat diet and 10% LSE(FD10G), high fat diet and 20% LSE(FD20G). The result of this study were as follow. Hematological datas of 4 groups were same level, which were not significant. The activities of ALP, GOT and LDH level were significantly different. Total cholesterol, LDL-cholesterol, triglyceride contentrations in serum and atherogenic index were remarkably reduced in LSE supplemented groups as compared high fat control groups. These result imply that LSE could be used as possible for decrease of serum lipid concentration.

Role of Glutathione Conjugation in 1-Bromobutane-induced Immunotoxicity in Mice

  • Lee, Sang-Kyu;Lee, Dong-Ju;Jeon, Tae-Won;Ko, Gyu-Sub;Yoo, Se-Hyun;Ha, Hyun-Woo;Kang, Mi-Jeong;Kang, Won-Ku;Kim, Sang-Kyum;Jeong, Tae-Cheon
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2010
  • Halogenated organic compounds, such as 1-bromobutane (1-BB), have been used as cleaning agents, agents for chemical syntheses or extraction solvents in workplace. In the present study, immunotoxic effects of 1-BB and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. Animals were treated orally with 1-BB at 375, 750 and 1500 mg/kg in corn oil once for dose response or treated orally with 1-BB at 1500 mg/kg for 6, 12, 24 and 48 hr for time course. S-Butyl GSH was identified in spleen by liquid chromatography-electrospray ionization tandem mass spectrometry. Splenic GSH levels were significantly reduced by single treatment with 1-BB. S-Butyl GSH conjugates were detected in spleen from 6 hr after treatment. Oral 1-BB significantly suppressed the antibody response to a T-dependent antigen and the production of splenic intracellular interlukin-2 in response to Con A. Our present results suggest that 1-BB could cause immunotoxicity as well as reduction of splenic GSH content, due to the formation of GSH conjugates in mice. The present results would be useful to understand molecular toxic mechanism of low molecular weight haloalkanes and to develop biological markers for exposure to haloalkanes.

Intravenous Administration of Substance P Attenuates Mechanical Allodynia Following Nerve Injury by Regulating Neuropathic Pain-Related Factors

  • Chung, Eunkyung;Yoon, Tae Gyoon;Kim, Sumin;Kang, Moonkyu;Kim, Hyun Jeong;Son, Youngsook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.259-265
    • /
    • 2017
  • This study aimed to investigate the analgesic effect of substance P (SP) in an animal model of neuropathic pain. An experimental model of neuropathic pain, the chronic constriction injury (CCI) model, was established using ICR mice. An intravenous (i.v.) injection of SP (1 nmole/kg) was administered to the mice to examine the analgesic effects of systemic SP on neuropathic pain. Behavioral testing and immunostaining was performed following treatment of the CCI model with SP. SP attenuated mechanical allodynia in a time-dependent manner, beginning at 1 h following administration, peaking at 1 day post-injection, and decaying by 3 days post-injection. The second injection of SP also increased the threshold of mechanical allodynia, with the effects peaking on day 1 and decaying by day 3. A reduction in phospho-ERK and glial fibrillary acidic protein (GFAP) accompanied the attenuation of mechanical allodynia. We have shown for the first time that i.v. administration of substance P attenuated mechanical allodynia in the maintenance phase of neuropathic pain using von Frey's test, and simultaneously reduced levels of phospho-ERK and GFAP, which are representative biochemical markers of neuropathic pain. Importantly, glial cells in the dorsal horn of the spinal cord (L4-L5) of SP-treated CCI mice, expressed the anti-inflammatory cytokine, IL-10, which was not seen in vehicle saline-treated mice. Thus, i.v. administration of substance P may be beneficial for improving the treatment of patients with neuropathic pain, since it decreases the activity of nociceptive factors and increases the expression of anti-nociceptive factors.

Pulsed electric field pasteurization of mandarin and carrot juices (Pulsed electric field 공정을 이용한 감귤 주스와 당근 주스 살균)

  • Lee, Seung Jo;Choi, Hyuk Joon;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.408-414
    • /
    • 2017
  • Effects of pulsed electric field (PEF) processing on growth inhibition of indigenous aerobic microorganisms and the quality of mandarin and carrot juices were investigated. Mandarin juice was PEF-treated at 15-23 kV/cm for $23-241{\mu}s$, whereas carrot juice was treated at 13-14 kV/cm for 127-198 s. At $25^{\circ}C$ (inlet temperature), PEF treatments at 23 kV/cm for $104{\mu}s$ and 14 kV/cm for $198{\mu}s$ reduced the numbers of total mesophilic aerobes by $6.3{\pm}0.8$ and $5.5{\pm}0.9{\log}\;CFU/mL$ in mandarin juice and carrot juice, respectively. Elevation of inlet temperature to $40^{\circ}C$ increased the reduction rates in both juices. In general, the treatments resulting in the highest microbial inhibition at 25 and $40^{\circ}C$ did not alter the physicochemical and nutritional properties of both juices (p>0.05). PEF is a feasible technology to pasteurize mandarin and carrot juices commercially, with minimal quality deterioration.

Effect of Decomposition on Nitrogen Dynamics in Soil Applied with Compost and Rye

  • Ko, Byong-Gu;Kim, Myung-Sook;Park, Seong-Jin;Yun, Sun-Gang;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.648-657
    • /
    • 2015
  • Soil organic matter (SOM) plays an important role in the continuous production and environmental conservation in arable soils. In particular, the decomposition of organic matter in soil might promote soil organic matter and fertility due to the mineralization of N. In this study, to evaluate the effect of organic matter amendment on the C mineralization and N dynamic, $CO_2-C$ flux, extractable N and $N_2O$ emission were determined using closed chamber for 4 weeks at 10, 15, $20^{\circ}C$ of incubation temperature after the mixture of $2Mgha^{-1}$ rice straw compost and rye in sandy loam and clay loam. Regardless of soil texture, decomposition rates of rice straw compost and rye at $10{\sim}20^{\circ}C$ of incubation temperature ranged from 0.9 to 3.8% and 8.8 to 20.3%, respectively. Rye application in soil increased $NH_4-N$ and $NO_3-N$ content as well as the $N_2O$ emission compared to the rice straw compost. After incubation for 4 weeks, total C content in two soils was higher in rice straw compost than in rye application. In conclusion, application of rice straw compost and rye to soil was able to improve the soil organic matter and fertility. However, organic matter including the recalcitrant compounds like rice straw compost would be effective on the management of soil organic matter and the reduction of greenhouse gases in soil.

Ozone-produced Oxidants Improve Water Quality Parameters and Microbial Colony Counts in the Semi-Recirculating Aquaculture System for Olive Flounder Paralichthys olivaceus (반순환여과양식시스템에서 오존 유래 잔류산화물이 넙치(Paralichthys olivaceus) 사육수의 수질과 미생물에 미치는 영향)

  • Jung, Sangmyung;Park, Woogeun;Park, Seongdeok;Park, Jeonghwan;Kim, Jae-Won;Kim, Pyong-kih
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.751-760
    • /
    • 2021
  • This study investigated the changes in water quality parameters and microbial colonies when ozone was applied to a semi-recirculating aquaculture system (semi-RAS) for the olive flounder Paralichthys olivaceus (500 g in average weight). Concentrations of ozone-produced oxidants (OPO) in rearing tanks were maintained at 0, 0.014, 0.025 mg/L as Cl2 for 26 days. Except total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, phosphate phosphorus, chemical oxygen demand, and total suspended solids decreased significantly with increasing OPO concentration in daily and weekly monitoring (P<0.05). Colony forming unit (CFU) counts of heterotrophic marine bacteria decreased in an OPO concentration-dependent manner. Overall reduction rates of microbial colonies in the treatments were 80% higher than those of the control (P<0.05). During the experiment, the OPO concentration-driven ozonation was reliably practiced without any adverse effects on the animals cultured in semi-RAS. Considering the biohazard, operating cost, and stability of ozonation, an OPO concentration of 0.014 mg/L would be sufficient to control water quality parameters and microbial colonies in a semi-RAS.

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Isolation of Lactic Acid Bacteria with Anti-MRSA Bacteriocin Activity and Characterization of the Bacteriocin Product

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Cho, Sang-Hyun;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • This study aimed at isolating lactic acid bacteria with anti-MRSA (methicillin-resistant Staphylococcus aureus) bacteriocin activity from fermented shrimp. We selected three strains, named Weissella sp. S1, S2, and S3, using analysis based on 16S rRNA gene sequences. All strains showed appropriate growth in an MRS medium containing 5% (w/v) NaCl and showed antibacterial activities against Bacillus cereus, Escherichia coli, Staphylococcus aureus, and MRSA. The strains exhibited similar growth rates at 0-5% NaCl, with approximate reduction in growth rate observed at 9% NaCl. Weissella sp. S1, S2, and S3 exhibited maximum growth rates at pH 7, 9, and 8, respectively. The crude bacteriocin was prepared from Weissella sp. S3 and subjected to characterization. The remaining activities after 30 min of exposure at each temperature were 100%, beyond 75%, and 49% at 4℃ and 37℃, 50℃ and 70℃, and 100℃, respectively. The remaining activities after 24 h of exposure at each pH were 100%, 75%, and 49% at pH 3 and 5, 7 and 9, and 10, respectively. Use of 50% (v/v) ethanol or isopropanol treatment did not diminish the antibacterial activity of the bacteriocin, while the 50% (v/v) hexane treatment reduced the activity by 51%. The molecular weight of the bacteriocin was nearly 6 kDa that was quantified using tricine-SDS-PAGE. Our findings suggest that Weissella sp. S3 may be considered a probiotic and useful source of antimicrobial substances in the development of bio-preservatives for food or in MRSA treatment.

Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants

  • Yoo, Sung-Je;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1124-1136
    • /
    • 2019
  • Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased $Ca^{2+}$ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.