• Title/Summary/Keyword: Bio-reduction

Search Result 745, Processing Time 0.022 seconds

Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase (일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 전극재료와 전위의 영향)

  • Shin, Jun Won;Kim, You-Sung;Song, Ji-Eun;Lee, Sang-Hee;Lee, Sang-Phil;Lee, Ho-Jun;Lim, Mi-Ran;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.165-169
    • /
    • 2008
  • The effect of reduction of carbon dioxide by CODH(Carbon Monoxide Dehydrogenase) was compared on glassy carbon and gold working electrodes. In case of gold electrode, the choice of the optimum applied potential is very important since $H_2$ evolution can be mixed with $CO_2$ reduction. On the other hand, efficient $CO_2$ reduction was observed up to -650 mV vs. NHE on glassy carbon in neutral solution due to the larger overpotential for $H_2$ evolution on glassy carbon surface than that on gold surface. The optimum potential for $CO_2$ reduction was found to be $-570{\sim}600\;mV$ vs. NHE. The current efficiency of $CO_2$ to CO decreased dramatically at more negative potential according to the activity of enzyme decrease and the hydrogen evolution.

Direct Bio-regeneration of Nitrate-laden Ion-exchange Resin (질산성질소에 파과된 이온교환수지의 생물학적 직접 재생)

  • Nam, Youn-Woo;Bae, Byung-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.777-781
    • /
    • 2013
  • Ion-exchange technology is one of the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. In this background, a combined bio-regeneration and ion-exchange system was operated in order to prove that nitrate-laden resins could be bio-regenerated through direct contact with denitrifying bacteria. A nitrate-selective A520E resin was successfully regenerated by denitrifying bacteria. The bio-regeneration efficiency of nitrate-laden resins increased with the amount of flow passed through the ion-exchange column. When the fully exhausted resin was bio-regenerated for 5 days at the flowrate of 30 BV/hr and MLSS concentration of $125{\pm}25mg/L$, 97.5% of ion-exchange capacity was recovered. Measurement of nitrate concentrations in the column effluents also revealed that less than 5% of nitrate was eluted from the resin during 5 days of bio-regeneration. This result indicates that the main mechanism of bio-regeneration is the direct reduction of nitrate by denitrifying bacteria on the resin.

Tribology Characteristics of Hexagonal Shape Surface Textured Reduction Gear in Electric Agricultural Vehicle

  • Choi, Wonsik;Pratama, Pandu Sandi;Byun, Jaeyoung;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • An experimental study was conducted on the wear and friction responses in sliding tests of a micro-textured surface on laser pattern (LP) steel as reduction gear material in electric guided vehicle. In this research, the friction characteristics of laser pattern steel under different micro texture density conditions were investigated. The friction tests were carried out at sliding speeds of 0.06 m/s to 0.34 m/s and at normal loads of 2 to 10 N. Photolithography method was used to create the dimples for surface texturing purpose. Four different specimens having different dimple densities of 10%, 12.5%, 15%, and 20% were observed respectively. In this research, friction conditions as shown in Stribeck curve were investigated. Furthermore, the microscopic surface was observed using scanning electron microscope. It was found that the dimple density had a significant role on the friction characteristics of laser pattern steel conditioned as reduction gear material in an agricultural vehicle. The duty number showed that the friction condition was hydrodynamic regime. The best performance was obtained from 12.5% dimple density with lowest friction coefficient achieved at 0.018771 under the velocity of 0.34 m/s and 10N load.

Green Synthesis of Platinum Nanoparticles by Electroreduction of a K2PtCl6 Solid-State Precursor and Its Electrocatalytic Effects on H2O2 Reduction

  • Kim, Kyung Tae;Jin, Sung-Ho;Chang, Seung-Cheol;Park, Deog-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3835-3839
    • /
    • 2013
  • A new synthesis route for Pt nanoparticles by direct electrochemical reduction of a solid-state Pt ion precursor ($K_2PtCl_6$) is demonstrated. Solid $K_2PtCl_6$-supported polyethyleneimine (PEI) coatings on the surface of glassy carbon electrode were prepared by simple mixing of solid $K_2PtCl_6$ into a 1.0% PEI solution. The potential cycling or a constant potential in a PBS (pH 7.4) medium were applied to reduce the solid $K_2PtCl_6$ precursor. The reduction of Pt(IV) began at around -0.2 V and the reduction potential was ca. -0.4 V. A steady state current was achieved after 10 potential cycling scans, indicating that continuous formation of Pt nanoparticles by electrochemical reduction occurred for up to 10 cycles. After applying the reduction potential of -0.6 V for 300 s, Pt nanoparticles with diameters ranging from $0.02-0.5{\mu}m$ were observed, with an even distribution over the entire glassy carbon electrode surface. Characteristics of the Pt nanoparticles, including their performance in electrochemical reduction of $H_2O_2$ are examined. A distinct reduction peak observed at about -0.20 V was due to the electrocatalytic reduction of $H_2O_2$ by Pt nanoparticles. From the calibration plot, the linear range for $H_2O_2$ detection was 0.1-2.0 mM and the detection limit for $H_2O_2$ was found to be 0.05 mM.

Sustainable middle indices development for Algae Bio-energize industry (해조류를 이용한 바이오 에너지화 산업의 지속가능 중간지표 개발)

  • Koo, Ja-Kong;Kim, So-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.11-16
    • /
    • 2014
  • Korea is the urgent need to diversify the bio-energy raw materials because we have narrow area of land cultivated plants and lack the bio-mass resources. Using a resource-rich the marine environment enclosed on three sides by the sea. Through bio-energy production-technical and carbon dioxide reduction measures which will be a very effective alternative. Sustainable development about algae bio-energize industry through SSaM-GG(Smart, Shared and Mutual-Green, Growth) is expected. Algae has high carbon dioxide absorption factor, extracting oil from algae is thirty times much more than sunflower.

Competitive Adsorption and Subsequent Desorption of Sulfate in the Presence of Various Anions in Soils

  • Hong, Byeong-Deok;Lee, Kyo-seok;Lee, Dong-Sung;Rhie, Ja-Hyun;Bae, Hui-Su;Seo, IL-Hwan;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2016
  • In this experiment we investigated the influence of various anions including oxalic acid encountered as solution phase in soil on the adsorption and desorption of sulfate in Chungwon Bt soil. The effect of chloride and nitrate on the adsorption of sulfate was not significant, suggesting that sulfate was better able to compete for adsorption sites at concentrations studied, in contrast to the large reduction in the amount of chloride adsorbed in the presence of sulfate. The results of competition for sorption sites between sulfate and anion showed that the simultaneous presence of two anions in solution was effective in reduction of competing anion at a maximum value of adsorption, due to the similar adsorption mechanism for anion competition. Therefore, the variation in the buffer power of the acids will produce a change in the strength and amount of adsorption and the competitive ability.

Bio-regeneration of Ion-exchange Resin for Treating Reverse Osmosis Concentrate (RO 농축폐액의 처리를 위한 이온교환수지의 생물재생)

  • Bae, Byung-Uk;Nam, Youn-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2014
  • In order to remove both nitrate and sulfate present in the concentrate of RO(reverse osmosis) process, a combined bio-regeneration and ion-exchange(IX) system was studied. For this purpose, both denitrifying bacteria(DNB) and sulfate reducing bacteria(SRB) were simultaneously cultivated in a bio-reactor under anaerobic conditions. When the IX column containing a nitrate-selective A520E resin was fully exhausted by nitrate and sulfate, the IX column was bio-regenerated by pumping the supernatant of the bio-reactor, which contains MLSS concentration of $125{\pm}25mg/L$, at the flowrate of 360 BV/hr. Even though the nitrate-selective A520E resin was used, the breakthrough curves of ionic species showed that sulfate was exhausted earlier than nitrate. The reason for this result is due to the fact that the concentration of sulfate in RO concentrate was 36 to 48 times higher than nitrate. The bio-reactor was successfully operated at a volumetric loading rate of 0.6 g $COD/l{\cdot}d$, nitrate-N loading rate of 0.13 g $NO_3{^-}-N/l{\cdot}d$, and sulfate loading rate of 0.08 g $SO_4{^{2-}}/l{\cdot}d$. The removal rate of SCOD, nitrate-N, sulfate was 90, 100, and 85%, respectively. When the virgin resin was fully exhausted and consecutively bio-regenerated for 2 days, 81% of nitrate and 93% of sulfate were reduced. When the virgin resin was repeatedly used up to 4 cycles of service and bio-regeneration, the ion-exchange capacity of bio-regenerated resin decreased to 95, 91, 88, and 81% of virgin resin.

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

Evaluation Methods of Carbon Reduction Contribution for Green Budget of National R&D Projects in Agricultural Sector (농업분야 탄소인지예산제도 도입을 위한 국가연구개발사업의 탄소저감 기여도 평가 방안)

  • Kim, Solhee;Han, Seunghyun;Kang, Seong-Soo;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.41-51
    • /
    • 2022
  • Carbon neutrality is emerging as a new paradigm for the international society by transiting from climate change to climate risk. This study proposes evaluation methods for the carbon reduction contribution of climate-related national R&D projects in order to introduce a green budget system in the agricultural sector. We considered the domestic and foreign green budget systems and classified national R&D projects into positive, negative, and neutral from the perspective of carbon reduction. The results of this study propose three methods to estimate the monetary costs and carbon benefits by adopting the framework for the economic evaluation of national R&D projects conducted by the Rural Development Administration. These methods support to evaluate the potential contribution to carbon reduction of national R&D projects in the agricultural sector. Finally, the proposed methods were tested and verified for the efficiency and validity of evaluating carbon reduction contribution. These evaluation methods of the carbon reduction contribution can be used as a basic methodology for the pre-budget calculations of national R&D projects and the contribution for the greenhouse gas reduction budget.