• Title/Summary/Keyword: Bio-production

Search Result 2,291, Processing Time 0.028 seconds

Feasibility of batch anaerobic bio-hydrogen production from different organic wastes (다양한 유기성 폐자원을 적용한 바이오 수소 생성 연구)

  • Hwang, Jae-Hoon;Choi, Jeong-A;Abou-Shanab, R.A.I.;Jeon, Byong-Hun
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.80-85
    • /
    • 2009
  • The effects of various organic wastes on anaerobic fermentative hydrogen production were studied using enriched mixed microflora in batch tests. Rotten fruit, corn powder and organic wastewater enriched with sulfate (up to 1,000 mg/L) were used for experiments. Maximum hydrogen production (547.1 mL) was observed from rotten apple with initial substrate concentration of 132.2 g COD/L. The experimental result on sulfate enriched organic wastewater indicated that hydrogen production is not adversely influenced by relatively high sulfate concentration. Residual sulfate content remained at 96-98 % after 75 hours of reaction, which showed that no major sulfate reduction was occurred at pH 5.3-5.5 in the reactor. The volatile fatty acid (VFA) fractions produced during the reaction was in the order of butyrate > acetate > propionate in all experiments. The results of this study would be useful for controlling the conditions on fermentative hydrogen production using different feedstocks.

  • PDF

Production of Bio-ethanol from Agar using Saccharomyces cerevisiae (Saccharomyces cerevisiae 에 의한 Agar로부터 바이오 에탄올 생산)

  • Lee, Sung-Mok;Yu, Byung Jo;Kim, Young Min;Choi, Soo-Jeong;Ha, Jong-Myung;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.290-295
    • /
    • 2009
  • Red-algae agar, consisting of D-galactose and 3, 6-anhydro-L-galactose, is usable for bio-ethanol production if hydrolyzed to monomer unit. The objective of this study is to produce bio-ethanol from agar using the heat and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 strains using agar-pretreatment. The optimal condition for reducing sugar conversion by agar was found to be 15 min reaction at a HCl concentration of 0.1 N and $120^{\circ}C$. The optimum concentration for maximum cell growth was 0.1 N NaCl (17.88 g/L). Over 0.1 N NaCl, the cell growth decreased to 6.78~10.76 g/L. At 16% agar concentration, the ethanol production obtained by optimum pretreatment was found to be 10.16 g/L.

Identification of a Genetic Locus Related to Antivirus Production in Pseudomonas fluorescence strain Gpf01 Against Cucumber mosaic virus

  • Cho, Sae-Youll;Lee, Seon-Hwa;Park, Su-Jin;Choi, Kyu-Up;Cho, Jun-Mo;Hur, Jang-Hyun;Shrestha, Anupama;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • Pseudomonas fluorescens strain Gpf01, isolated from ginseng rhizosphere showed antiviral activity against Cucumber mosaic virus, when tested in a local host of CMV, Chenopodium amaranticolor. Transposon mutant library of Gpf01 was prepared using pGS9::Tn5 and the mutant Gpf01-RS19 was found to loose antiviral production. We developed primers from the flanking region of Tn5 and found a cosmid clone pAV1123, harboring 1.2 kb antiviral compound producing (avcf01) locus. When a sub-clone pPH9, which carried 9.3 kb region of pAV1123, was introduced into antivirus deficient P. fluorescens wild type strain B16, it exhibited antiviral activity. Using Tn3-gus mutagenesis and complementation analysis, it was found that the genes related to antiviral activity production resided in a 9.3 kb HindIII-HindIII fragment of pAV1123, indicating that the plasmid carries an essential genes promoting antiviral activity.

Effect of carbon substrate on the intracellular fluxes in succinic acid producing Escherichia coli.

  • Hong, Soon-Ho;Lee, Dong-Yup;Kim, Tae-Yong;Lee, Sang-Yup;Park, Sun-Won
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.251-257
    • /
    • 2003
  • Metabolic engineering has become a new paradigm for the more efficient production of desired bioproducts. Metabolic engineering can be defined as directed modification of cellular metabolism and properties through the introduction, deletion, and modification of metabolic pathways by using recombinant DNA and other molecular biological tools. During the last decade, metabolic flux analysis(MFA) has become an essential tool fur metabolic engineering. By MFA, the intracellular metabolic fluxes can be quantified by the measurement of extracellular metabolite concentrations in combination with the stoichiometry of intracellular reactions and mass balances. The usefulness and functionality of MFA are demonstrated by applying to metabolic pathways in E. coli. First, a large-scale in silico E. coli model is constructed, and then the effects of carbon sources on intracellular flux distributions and succinic acid production were investigated on the basis of the uptake and secretion rates of the relevant metabolites. The results indicated that succinic acid yields increased in order of gluconate, glucose and sorbitol. Acetic acid and lactic acid were produced as major products rather than when gluconate and glucose were used carbon sources. The results indicated that among three carbon sources available, the most reduced substrate is sorbitol which yields efficient succinic acid production.

  • PDF