• Title/Summary/Keyword: Bio-monitoring system

Search Result 276, Processing Time 0.023 seconds

Comparative Analysis of Environmental Ecological Flow Based on Habitat Suitability Index (HSI) in Miho stream of Geum river system (서식지적합도지수(HSI)에 따른 환경생태유량 비교 분석 : 미호천을 중심으로)

  • Lee, Jong Jin;Hur, Jun Wook
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • In this study, the Habitat Suitability Index (HSI) was calculated in the Miho stream of the Geum river system, and the environmental ecological flow by point was evaluated. Two points (St.3 and St.8) representing the up and downstream of Miho Stream were selected, in order to calculate the Habitat Suitability Index, the depth and velocity at point where each species is appeared were investigated. The Habitat Suitability Index (HSI) was calculated by the Washington Department of Fish and Wildlife (WDFW) method using the number collected by water depth and velocity section and the results of the flow rate survey. Two target species were selected in this study; dominant species and swimming species sensitive to flow. In the case of a single species of Zacco platypus, the water depth was 0.1 - 0.5 m and the velocity was 0.2 - 0.5 m/s. For species of swimming fish, the water depth was 0.2 - 0.5 m and the velocity was 0.2 - 0.5 m/s. The discharge-Weighted Useable Area (WUA) relationship curve and habitat suitability distribution were simulated at the Miho Stream points St.3 and St.8. At the upstream St.3 of Miho Stream, the optimal discharge was simulated as 4.0 m3/s for swimming fishes and 2.7 m3/s for Zacco platypus. At the downstream point of St.8, species of swimming fish were simulated as 8.8 m3/s and Zacco platypus was simulated as 7.6 m3/s. In both points, the optimal discharge of swimming fish was over estimated. This is a result that the Habitat Suitability Index for swimming fish requires a faster flow rate than the habitat conditions of the Zacco platypus. In the calculation of the minimum discharge, the discharge of Zacco platypus is smaller and is evaluated to provide more Weighted Useable Area. In the case of swimming fishes, narrow range of depth and velocity increases the required discharge and relatively decreases the Weighted Useable Area. Therefore, when calculating the Habitat Suitability Index for swimming fishes, it is more advantageous to calculate the index including the habitat of all fish species than to narrow the range.

Marine Environmental Characteristics in Western Coastal Waters of the South Sea of Korea (전남서부해역의 수질환경 특성)

  • Cho, Eun-Seob;Kim, Sang-Soo;Lee, Sang-Yong;Jeong, Hee-Dong;Kim, Sook-Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.187-203
    • /
    • 2009
  • This study monitored marine environments in system coastal waters of the South Sea of Korea during the period of 2005-2007 and analyzed the data from environmental parameters and nutrients, which contributed to fluctuate marine environmental characteristics in aquaculture. On the basis of the fluctuation of temperature depending on seasons and sampling sites, too seasons of winter and summer showed a remarkable temperature gap of $5^{\circ}C$ compared with spring and autumn. Salinity in spring and summer approached 9 psu in Morkpo. Most of sampling sites showed COD below 2mg/L, indicating somewhat optimal environmental conditions. T-N and T-P also had desirable horizontal distributions all year round the concentration of SS was higher, but Chi. a was well-distributed horizontally except for Morkpo. Marone environmental parameters of surface water were similar to those of bottome water except for Morkpo. Most of sampling sites showed the ratio of N/P below 16, impling that nitrogen played an important role in growth of phytoplankton as a limiting factor. The relationship between Chi. a and nutrients was positive linear, whereas the relationship between Chi. a and COD were very strong positive. winder, Spring and Summer showed the strong relationship between Chi. a and COD. In the analysis of dendogram based on environmental parameters using SPSS ver. 10.0, the station 7 did not belong to other stations, and kept an independent place. The relationships of waters between Jindo, Wando and Heanam ware close, compared with other waters. Consequently, these regions except for Morkpo into which fresh water is introduced by the dike showed somewhat optimal environmental parameters and nutrients in year, and were assumed to maintain the desirable marine conditions for aquaculture.

  • PDF

Monitoring Bacillus cereus and Aerobic Bacteria in Raw Infant Formula and Microbial Quality Control during Manufacturing (영.유아용 식품원료의 Bacillus cereus와 일반세균 모니터링 및 제조공정 중 미생물 품질제어)

  • Jung, Woo-Young;Eom, Joon-Ho;Kim, Byeong-Jo;Ju, In-Sun;Kim, Chang-Soo;Kim, Mi-Ra;Byun, Jung-A;Park, You-Gyoung;Son, Sang-Hyuck;Lee, Eun-Mi;Jung, Rae-Seok;Na, Mi-Ae;Yuk, Dong-Yeon;Gang, Ji-Yeon;Heo, Ok-Sun;Yoon, Min-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.494-501
    • /
    • 2010
  • The purpose of this study was to examine the presence of Bacillus cereus, aerobic bacteria and coliforms in the raw material of infant formulas and investigate the manufacturing process in terms of microbial safety. Among ten kinds of raw infant formula material samples (n=20), Bacillus cereus appeared in two (n=4). Aerobic bacteria were not detected in raw infant formula material or maximum 4.15 log CFU/g. Eleven species of aerobic bacteria were isolated and 76% of them were Sphingomonas paucimobilis, Pseudomonas fluorescens, Rhizobium radiobactor, or Stenotrophomonas maltophilia. A Pearson's correlation analysis revealed that the most influential factors for detecting Bacillus cereus were aerobic bacteria and coliforms. In other words, when the measured values of aerobic bacteria and coliforms were higher, the possibility that Bacillus cereus would appear increased. In a regression model to predict Bacillus cereus, the rate of appearance was correlated with aerobic bacteria and coliforms, and its contribution rate for effectiveness was 86%. Improving microbial quality control by pasteurization, spray dry, popping and extrusion resulted in a decrease in the numbers of Bacillus cereus, aerobic bacteria and coliforms in the raw materials. The results suggest that a hazard analysis and critical control point system might be effective for reducing microbiological contamination.

Distribution and Conservation plan of Vascular Plants in Outstanding Forest Wetlands in Jeonnam Area (전남권역 우량 산림습원의 관속식물상 변화 및 보전방안)

  • Lee, Jong-Won;Yun, Ho-Geun;Kang, Shin-Ho;An, Jong-Bin
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.224-255
    • /
    • 2022
  • This study was carried out to examine the changes in vascular flora in the first and second surveys targeting 32 outstanding forest wetlands in Jeonnam area including Gwangju metropolitan city, and based on this, establish a future monitoring system and effectively manage the excellent forest wetlands. The survey investigated the area seasonally every 4-5 years from 2015 to 2021. The change of flora of 32 excellent forest wetlands in Jeollanam-do increased from 103 families, 311 genera, 496 species, 16 subspecies, 38 varieties, 6 varieties, 556 taxa, to 111 families, 362 genera, 599 species, 16 subspecies, 51 varieties, 8 varieties, 674 taxa. Remarkable plants such as Red list and plants endemic to the Korean Peninsula increased also. However, Nepeta cataria and the like are exterminated locally, so an in situ and ex situ conservation strategy must be established. In the case of plants categorized according to wetland preference, the distribution ratio of such wetland plants slightly decreased and the distribution ratio of such terrestrial plants lightly increased for absolute wetland plants. It is necessary to prepare countermeasures for the terrestrialization of forest wetlands and to develop research techniques that can distinguish boundaries. In addition, the forest wetland should be systematically managed and supervised by designating it as a Forest Genetic Resources Reserve that can effectively conserve it.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.