• Title/Summary/Keyword: Bio-mimicking

Search Result 38, Processing Time 0.029 seconds

Robot Control Method in Parameter Space Adopting Biomimetics (생체모방기술을 접목한 파라미터 공간에서의 로봇제어 기법)

  • Kim, Heejoong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.16-23
    • /
    • 2018
  • In the paper, a robot control technique by employing Biomimetics is described. Rhythmic movements of the diving beetle's leg were analyzed and the formulated equations on the motion were drawn by applying Fourier least mean square fitting method. Simple control parameters were defined by comparing the observed locomotion through a motion capture system and reproduced motions according to changes in the values in the equation. Subsequently, the correlation of each parameter was discovered and expressed in a parameter space. Apparently, it was confirmed that various bio-mimicking motions can simply be generated for controlling the robot. Additionally, robot designing based on adopting structural advantages which the living organism possess have been briefly introduced. The proposed bio-mimicking motion generating technique was observed to be applicable to robot system developments under various environmental conditions.

Bio Nature Mimic - Simultaneous Measurements of a Seagull Model's Motion and its Flow Fields (생체자연모사 - 갈매기 운동과 유동 동시측정 해석)

  • Doh, Deog-Hee;Baek, Tae-Sil;Cho, Kyeong-Rae;Pyeon, Yong-Beom;Cho, Yong-Beom
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.117-120
    • /
    • 2006
  • Inspiring or mimicking biological bodies is regarded as one of a breakthrough in the conventional engineering. The bird's motion is one of the mimicking objects. Seagulls fly under strong storm at sea. An attempt of investigating into the characteristics of a seagull model's motion and its flow fields has been made in this study. Three cameras, two for motion capture and one for flow field, were used. The motions of the seagull's wing have been reconstructed, and the flow characteristics around the wing have been investigated with 2D-PIV measurements.

  • PDF

Artificial Adhesive Surfaces Mimicking Gecko Setae: Novel Approaches in Surface Engineering

  • Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.13-16
    • /
    • 2008
  • Surface Engineering is a field closely related to Tribology. Surfaces are engineered to reduce adhesion, friction and wear between moving components in engineering applications. On the contrary, it is also necessary to have high adhesion between surfaces so as to hold/stick surfaces together. In this context, surface engineering plays an important role. In recent times, scientists are drawing inspiration from nature to create effective artificial adhesive surfaces. This article provides some examples of novel surface engineering approaches conducted by various research groups worldwide that have significantly contributed in the creation of bio-inspired artificial adhesive surfaces.

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer (패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동)

  • Kwon, Ki-Seong;Chun, Jae-Yeong;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.108-115
    • /
    • 2020
  • In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1225-1228
    • /
    • 2005
  • C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

Nanoscale Protein Chip based on Electrical Detection

  • Choi, Jeong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.18-18
    • /
    • 2005
  • Photoinduced electron transport process in nature such as photoelectric conversion and long-range electron transfer in photosynthetic organisms are known to occur not only very efficiently but also unidirectionally through the functional groups of biomolecules. The basic principles in the development of new functional devices can be inspired from the biological systems such as molecular recognition, electron transfer chain, or photosynthetic reaction center. By mimicking the organization of the biological system, molecular electronic devices can be realized $artificially^{1)}$. The nano-fabrication technology of biomolecules was applied to the development of nano-protein chip for simultaneously analyzing many kinds of proteins as a rapid tool for proteome research. The results showed that the self-assembled protein layer had an influence on the sensitivity of the fabricated bio-surface to the target molecules, which would give us a way to fabricate the nano-protein chip with high sensitivity. The results implicate that the biosurface fabrication using self-assembled protein molecules could be successfully applied to the construction of nanoscale bio-photodiode and nano-protein chip based on electrical detection.

  • PDF

Multipath combining method for frequency shift keying underwater communications mimicking dolphin whistle (돌고래 휘슬음을 모방한 frequency shift keying 수중통신기법의 다중경로결합 수신 방법)

  • Ahn, JongMin;Lee, HoJun;Kim, YongChul;Kim, WanJin;Chung, JaeHak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.404-411
    • /
    • 2018
  • This paper proposes a dolphin whistle mimicking underwater communication method using FSK (Frequency Shift Keying) and method to improve BER (Bit Error Rate) performance by using multipath gain combining. The proposed method divides whistle sound into short time intervals and transmits FSK modulated signal that ensures orthogonality of the symbol. Multipath gain can be obtained by using characteristic of mimicked signal frequency that varies with time. To demonstrate the performance of the proposed method, computer simulations and lake experiments were conducted. Computer simulation results show that an additional multipath gain is obtained by multipath. From lake experiments, when symbol length is 20 msec and modulation band is 900 Hz, the proposed FSK method with multipath combining gain obtains BER of 0.002, which is better than CSS (Chirp Spread Spectrum) with BER of 0.185. he proposed based on FSK method has higher imitation degree than the CSS method by analyzing mean cross-correlation value in the time - frequency domain of the imitated signal and actual whistle signal.

An recovery algorithm and error position detection in digital circuit mimicking by self-repair on Cell (세포의 자가 치료 기능을 모사한 디지털 회로에서의 오류위치 확인 및 복구 알고리즘)

  • Kim, Seok-Hwan;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.842-846
    • /
    • 2015
  • In this study, we propose an algorithm of the method of recovering quickly find the location of the error encountered during separate operations in the functional structure of complex digital circuits by mimicking the self-healing function of the cell. By the digital circuit was divided by 9 function block unit of function, proposes a method that It can quickly detect and recover the error position. It was the detection and recovery algorithms for the error location in the digital circuit of a complicated structure and could extended the number of function block for the $3{\times}3$ matrix structure on the digital circuit.

  • PDF