• Title/Summary/Keyword: Bio-medical imaging

Search Result 80, Processing Time 0.022 seconds

Layered Double Hydroxide Nanoparticles for Bio-Imaging Applications (LDH 나노입자 기반의 바이오 이미징 소재)

  • Jin, Wenji;Ha, Seongjin;Lee, Dongki;Park, Dae-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.445-454
    • /
    • 2019
  • Layered double hydroxides (LDHs) nanoparticles have emerged as novel nanomaterials for bio-imaging applications due to its unique layered structure, physicochemical properties, and good biocompatibility. Bio-imaging is one of the most important fields for medical applications in clinical diagnostics and therapeutics of various diseases. Enhanced diagnostic techniques are needed to realize new paradigm for next-generation personalized medicine through nanoscale materials. When nanotechnology is introduced into bio-imaging system, nanoparticle probes can endow imaging techniques with enhanced ability to obtain information about biological system at the molecular level. In this review, we summarize structural features of LDH nanoparticles with current issues of bio-imaging system. LDH nanoparticle probes are also discussed through in vitro as well as in vivo studies in various bio-imaging techniques including fluorescence imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT), which will have the potential in the development of the advanced nanoparticles with high sensitivity and selectivity.

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.

Numerical Modeling and Experiment for Single Grid-Based Phase-Contrast X-Ray Imaging

  • Lim, Hyunwoo;Lee, Hunwoo;Cho, Hyosung;Seo, Changwoo;Lee, Sooyeul;Chae, Byunggyu
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.83-91
    • /
    • 2017
  • In this work, we investigated the recently proposed phase-contrast x-ray imaging (PCXI) technique, the so-called single grid-based PCXI, which has great simplicity and minimal requirements on the setup alignment. It allows for imaging of smaller features and variations in the examined sample than conventional attenuation-based x-ray imaging with lower x-ray dose. We performed a systematic simulation using a simulation platform developed by us to investigate the image characteristics. We also performed a preliminary PCXI experiment using an established a table-top setup to demonstrate the performance of the simulation platform. The system consists of an x-ray tube ($50kV_p$, 5 mAs), a focused-linear grid (200-lines/inch), and a flat-panel detector ($48-{\mu}m$ pixel size). According to our results, the simulated contrast of phase images was much enhanced, compared to that of the absorption images. The scattering length scale estimated for a given simulation condition was about 117 nm. It was very similar, at least qualitatively, to the experimental contrast, which demonstrates the performance of the simulation platform. We also found that the level of the phase gradient of oriented structures strongly depended on the orientation of the structure relative to that of linear grids.

Brain Hologram Visualization for Diagnosis of Tumors using Graphic Imaging

  • Nam, Jenie;Kim, Young Jae;Lee, Seung Hyun;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This research paper examines the usage of graphic imaging in Holographic Projections to further advance the medical field. It highlights the importance and necessity of this technology as well as avant-garde techniques applied in the process of displaying images in digital holography. This paper also discusses the different types of applications for holograms in society today. Different tools were utilized to transfer a set of a cancer patient's brain tumor data into data used to produce a 3D holographic image. This image was produced through the transfer of data from one program to another. Through the use of semi-automatic segmentation through the seed region method, we were able to create a 3D visualization from Computed Tomography (CT) data.

Label-free NanoBio Imaging for New Biology and Medical Science

  • Moon, Dae Won
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.203-214
    • /
    • 2015
  • We have been developing a new label-free nanobio imaging platform using non-linear optics such as Coherent Anti-Stokes Raman Spectroscopy (CARS) and ion beam techniques based on sputtering and scattering such as Secondary Ion Mass Spectrometry (SIMS) and Medium Energy Ion Scattering Spectroscopy (MEIS), which have been widely used for atomic and molecular level analysis of semiconductors and nanomaterials. To apply techniques developed for semiconductors and nanomaterials for biomedical applications, the convergence of nano-analysis and biology were tried. Our activities on label-free nanobio imaging during the last decade are summarized in this review about non-linear optical 3D imaging, ellipsometric interface imaging, SIMS imaging, and TOF-MEIS nano analysis for cardiovascular tissues, collagen thin films, peptides on microarray, nanoparticles, and cell adhesion studies and finally the present snapshot of nanobio imaging and the future prospect are described.

2D-Covalent organic frameworks for bioimaging and therapeutic applications

  • Chanho Park;Dong Wook Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.171-176
    • /
    • 2020
  • Covalent organic frameworks (COFs) are porous crystalline polymers in which organic units are linked by covalent bonds and have a regular arrangement at the atomic level. Recently, the COFs have been much attention in bio-medical area such as bio-imaging, drug delivery, and therapeutics. These 2D nanoparticles are proving their value in nanomedicine due to their large surface area, functionalization through functional groups exposed on the surface, chemical stability due to covalent bonding, and high biocompatibility. The high ω-electron density and crystallinity of COFs makes it a promising candidate for bioimaging probes, and its porosity and large surface area make it possible to be utilized as a drug delivery vehicle. However, the low dispersibility in water, the cytotoxicity problems of COFs are still challenged to be solved in the future. In this regard, several efforts that increase the degree of dispersion through functionalization on the surface of COFs for the application to the biomedical field have been reported. In this review, we would like to describe the advantages and limitations of COFs for bio-imaging and anti-cancer treatment.

Integral Imaging Pickup Method of Bio-Medical Data using GPU and Octree (GPU와 옥트리를 이용한 바이오 메디컬 데이터의 집적 영상 픽업 기법)

  • Jang, Young-Hee;Park, Chan;Jung, Ji-Sung;Park, Jae-Hyeung;Kim, Nam;Ha, Jung-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, 3D stereoscopic display such as 3D stereoscopic cinemas and 3D stereoscopic TV is getting a lot of interest. In general, a stereo image can be used in 3D stereoscopic display. In other hands, for 3D auto stereoscopic display, the elemental images should be generated through visualization from every camera in a lens array. Since a lens array consists of several cameras, it takes a lot of time to generate the elemental images with respect to 3D virtual space, specially, if a large bio-medical volume data is in the 3D virtual space, it will take more time. In order to improve the problem, in this paper, we construct an octree for a given bio-medical volume data and then propose a method to generate the elemental images through efficient rendering of the Octree data using GPU. Experimental results show that the proposed method can obtain more improvement comparable than conventional one, but the development of more efficient method is required.

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

The Novel Method of Segmental Bio-Impedance Measurement Based on Multi-Frequency for a Prediction of risk Factors Life-Style Disease of Obesity (비만관련 생활습관병 위험인자 예측을 위한 다중 주파수 기반의 분할 체임피던스 측정법)

  • Kim, Eung-Seok;Noh, Yeon-Sik;Seo, Kwang-Seok;Park, Sung-Bin;Yoon, Hyung-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.375-384
    • /
    • 2010
  • The purpose of this study is to determine whether there is a correlation between the segmental bio-impedance measurement with the frequency modulations and the life-style disease of obesity. An obesity is not simply the factor for estimating the life-style disease of obesity, but also the risk factor occurring. There are many methods (BMI, WHR, Waist, CT, DEXA, BIA, etc.) for measuring a degree of obesity; the bio-impedance measurement is more economic and more effective than others. The physical examination, the blood test, the medical imaging diagnosis and the bio-impedancemeasurementswithmultiple frequencies for each body parts have been conducted for 77 people. The estimated value has been calculated through a segmental bio-impedance model based on multi-frequency that was created to reflect the highest correlation by analyzing correlation with linear regression analysis method for the measured bio-impedance and the risk factors. Then we compared with the clinical diagnosis. In case of high level cholesterol, low HDL-C and high LDL-C for life-style disease, the sensitivity is 80~100%and the specificity is 83~100%. This study has shown conclusively that bio-impedance can be a possible predictor to analyze the disease risk rate of population and individual health maintenance. And also the multi-frequency segmental bio-impedance can be used as early predictor to estimate the life-style disease of obesity.