• Title/Summary/Keyword: Bio-medical Engineering

Search Result 556, Processing Time 0.034 seconds

Design of Bio-signal Acquisition System in MRI Environment (MRI 내에서의 생체신호 측정 시스템 설계)

  • Jang, Bong-Ryeol;Park, Ho-Dong;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.871-872
    • /
    • 2006
  • In this paper, we designed bio-signal acquisition system in Magnetic Resonance Imager(MRI) Environment. In MRI Environment, Strong RF Pulse and Gradient Field Switching Noise exist and can cause distortion of ECG. By this, ECG can lose their important information. So we proposed a bio-signal acquisition system with robust immunity to RF pulse and gradient switching noise. In conclusions, the proposed system showed the prevent saturation of measured biosignal and possibility of using cardiac gating and respiration gating method.

  • PDF

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.145-146
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, dynamic PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced measurement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. These would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe most complicated nano- and bio-fluidic phenomena. In this presentation, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body will be introduced as a blue ocean strategy.

  • PDF

Development of Integrated Biomedical Signal Management System Based on XML Web Technology

  • Lee Joo-sung;Yoon Young-ro
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.399-406
    • /
    • 2005
  • In these days, HIS(Hospital Information System) raise the quality of medical services by effective management of medical records. As computing environment was developed, it is possible to search information quickly. But, standard medical data exchange is not completed between medical clinic and another organ so far. In case of patient transfer, past medical record was not efficiently transmitted. It be feasible treatment delay or medical accident. It is trouble that medical records is transferred by a person and communicate with each other. Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML. Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere. Form in system of company product, relative organs that handle bio-signal data is each other dissimilar and integration and to transmit to supplement bottleneck this research uses XML. In this study, it is discussed about sharing of medical data using XML web technology to standard medical record between hospital and relative organization The data structure model was designed to manage bio-signal data and patient record. We experimented about data transmission and all-in-one between different systems (one make use of MS-SQL database system and the other manage existent bio-signal data in itself form in file in this research). In order to search and refer medical record, the web-based system was implemented. The system that can be shared medical data was tested to estimate the merits of XML. Implemented XML schema confirms data transmission between different data system and integration result.

Development of Multi-Array Electrode and Programmable Multi-channel Electrical Stimulator for Firing Trigger Point of Myofascial Pain Syndrome (근막통증증후군의 통증유발점 치료를 위한 멀티어레이 전극과 프로그램 가능한 다채널 전기자극기 개발)

  • Kim, SooHong;Kim, SooSung;Jeon, GyeRok
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.221-227
    • /
    • 2015
  • In this study, Multi-Array Electrodes (MAE) and Programmable Multi-channel Electrical Stimulator (PMES) were implemented for firing Trigger Points (TPs) of the patient with Myofascial Pain Syndrome (MPS). MAE has 25 Ag/AgCl electrodes arranged in the form of array ($5{\times}5$) fabricated with flexible pad, which are applicable to be easy-attached to curved specific region of the human body. PMES consisted of 25 channels. Each channel was to generate various electric stimulus patterns (ESPs) by changing the mono-phasic or bi-phasic of ESP, On/Off duration of ESP, the interval between ESP, and amplitude of ESP. PMES hardware was composed of Host PC, Stimulation Pattern Editing Program (SPEP), and Multi-channel Electrical Stimulator (MES). Experiments were performed using MAE and PMES as the following. First experiment was performed to evaluate the function for each channel of Sub- Micro Controller Unit (SMCU) in MES. Second experiment was conducted on whether ESP applied from each channel of SMCU in PMES was focused to the electrode set to the ground, after applying ESP being output from each channel of SMCU in PMES to MAE.

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.

Imaging Human Structures

  • Kim Byung-Tae;Choi Yong;Mun Joung Hwan;Lee Dae-Weon;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.283-294
    • /
    • 2005
  • The Center for Imaging Human Structures (CIH) was established in December 2002 to develop new diagnostic imaging techniques and to make them available to the greater community of biomedical and clinical researchers at Sungkyunkwan University. CIH has been involved in 5 specific activities to provide solutions for early diagnosis and improved treatment of human diseases. The five area goals include: 1) development of a digital mammography system with computer aided diagnosis (CAD); 2) development of digital radiological imaging techniques; 3) development of unified medical solutions using 3D image fusion; 4) development of multi-purpose digital endoscopy; and, 5) evaluation of new imaging systems for clinical application

Research Status and Prospectives of Magnetic Nanoparticles in Bio-medical Applications (바이오-메디컬 자성나노입자 연구의 현황과 전망)

  • Min, J.H.;Song, A.Y.;Kim, Y.K.;Wu, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.28-34
    • /
    • 2009
  • Magnetic nanoparticles are widely used for bio-medical applications such as MRI contrast agents, drug-delivery systems, cell separation and hyperthermia, thanks to their unique magnetic properties and physico-chemical characteristics. In the early stage, efforts were focused on synthesis of uniform nanoparticles of desired dimension to achieve targeted, stable functionalities. Recently, it has been of great interest in dispersion of such nanoparitcles in aqueous solution and to render the nanoparticles bio-compatible with biofunctionality on request for utilization in bio-medical fields. In this paper, we survey the research status and give prospective on future work of magnetic nanoparticles for biomedical applications.

A Study on the Monitoring System of Growing Environment Department for Smart Farm (Smart 농업을 위한 근권환경부 모니터링 시스템 연구)

  • Jeong, Jin-Hyoung;Lim, Chang-Mok;Jo, Jae-Hyun;Kim, Ju-hee;Kim, Su-Hwan;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.290-298
    • /
    • 2019
  • The proportion of farm households in the total population is decreasing every year. The aging of rural areas is expected to deepen. The aging of agriculture is continuing due to the aging of the aged population and the decline of the young population, and agricultural manpower shortage is emerging as a threat to agriculture and rural areas. The existing facility cultivation was concentrated on the production / yield per unit area. However, nowadays, not only production but also crop quality should be good so that the quality of crops must be improved because they can secure competitiveness in the market. Therefore, the government plans to increase the productivity by hi-techization of ICT infrastructure horticulture and to plan the dissemination of energy saving smart greenhouse. Therefore, it is necessary to develop a Smart Farm convergence service system based on a hybrid algorithm to enhance diversity and connectivity. Therefore, this study aims to develop smart farm convergence service system which collects data of growth environment of the rhizosphere environment of crops by wireless and monitor smartphone.

Design and Fabrication of a Multi-modal Confocal Endo-Microscope for Biomedical Imaging

  • Kim, Young-Duk;Ahn, Myoung-Ki;Gweon, Dae-Gab
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.300-304
    • /
    • 2011
  • Optical microscopes are widely used for medical imaging these days, but biopsy is a lengthy process that causes many problems during the ex-vivo imaging procedure. The endo-microscope has been studied to increase accessibility to the human body and to get in-vivo images to use for medical diagnosis. This research proposes a multi-modal confocal endo-microscope for bio-medical imaging. We introduce the design process for a small endoscopic probe and a coupling mechanism for the probe to make the multi-modal confocal endo-microscope. The endoscopic probe was designed to decrease chromatic and spherical aberrations, which deteriorate the images obtained with the conventional GRIN lens. Fluorescence and reflectance images of various samples were obtained with the proposed endo-microscope. We evaluated the performance of the proposed endo-microscope by analyzing the acquired images, and demonstrate the possibilities of in-vivo medical imaging for early diagnosis.