• Title/Summary/Keyword: Bio-media material

Search Result 36, Processing Time 0.025 seconds

Changes in the Physico-Chemical Properties of Growing Media and the Growth of Oriental Melon Seedlings(Cucumis melo L.) by Charcoal Application (활성탄 혼합 비율에 따른 상토의 이화학성 변화와 참외(Cucumis melo L.)묘의 생육)

  • Kim, Kab-Cheol;Uhm, Mi-Jeong;Moon, Young-Hun;Choi, Yeong-Geun
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.61-66
    • /
    • 2004
  • To investigate the effect of charcoal on the physico-chemical characteristics in the growing media and the growth of oriental melon, six treatment, 0%, 10%, 20%, 30%, 40%, and 50% charcoal, were added into the growing media, Baroker. The value of pH in the charcoal contained growing media (CGM) was recorded higher and further increased by raising the charcoal ratio and by growing period. In 20% CGM, the range of pH was adequate to grow crop as 5.2${\sim}$5.8. Contents of Ca and K in CGM increased by raising the ratio of charcoal, while contents of Mg and Na decreased. The growth of oriental melon seedlings in 20% and 30% CGM was better than in other treatments, in terms of fresh and dry weight of shoot, plant height, leaf area, lear width and relative growth rate. Both the physico-chemical properties of growing media and the growth of oriental melon seedlings were changed by the addition of charcoal. These results suggest that charcoal can be used as mixing material with other potting media for producing the seedling of good quality.

Low Concentrated Nitrogen-Phosphate Removal of 4 Strains of Marine Bacteria Applied to Ceramic Media (세라믹 담체에 적용된 해양박테리아 4종의 저농도 질소-인 제거)

  • Lee, Gunsup;Kim, SoJung;Chung, Youngjae;Kim, Dongguin;Lee, Sang-Seob;Auh, Chung-Kyoon;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4910-4916
    • /
    • 2012
  • Changes of low concentrated nitrogen-phosphate removal efficiency were investigated in 4 strains of marine bacteria applied to ceramic media. Marine bacteria were isolated and identified from Gwangyang bay. Growth rates and removal efficiencies of $NH_3$-N of 4 strains of marine bacteria applied to ceramic media were increased approximately 3 fold and over 30% than control group, respectively. A. hydrophila and P. diminuta had highest ${NO_3}^-$-N and phosphate removal efficiencies, respectively. This results showed that ceramic media is very nice material for improvement of nitrogen-phosphate removal efficiency and isolated marine bacteria may be useful to control nitrogen-phosphate at low concentration in field.

Growth, Flowering, and Nutrient Composition of Salvia Grown in Peat moss Media Containing Pellets Processed with Poultry Feather Fibers at Different Mixing Ratios

  • Yoo, Yong Kwon;Kim, In Kyung;Roh, Mark S.;Roh, Yong Seung;Huda, Masud
    • Horticultural Science & Technology
    • /
    • v.35 no.3
    • /
    • pp.289-299
    • /
    • 2017
  • The objective of this study was to determine the effect of replacing perlite (PL) with pellets processed with poultry feather fiber as an inert material to prepare growing medium. The growth and flowering of Salvia splendens 'Vista Red' grown in individual growing medium $Biosangto^{(R)}$, peat moss (PM), PL, and two pellets (P45-1 and P45-2) were evaluated. Peat moss was mixed with PL, P45-1, or P45-2 at various ratios (1:0 to 1:3 or 3:1 by volume) to investigate the feasibility of replacing PL with pellets. Nutrient composition of the growing medium and leaf tissues was analyzed. The number of florets, inflorescence length, plant height, and fresh weight of plants grown in media containing P45-1 or P45-2 were reduced compared to those grown in individual growing medium PM or PL. As the mixing ratio of P45-1 or P45-2 to PM was higher, the growth of salvia, such as inflorescence length, plant height, number of leaves, and fresh weight was inhibited. Our results indicate that mixing three parts PM with one part of P45-1 (PM/P45-1/3:1) or P45-2 (PM/P45-2/3:1) accelerated flowering and increased the number of florets and leaves compared to other mixing ratios of PM and pellets media. The concentrations of phosphorus (P), calcium (Ca), boron (B), iron (Fe), and copper (Cu) in individual growing medium PL, P45-1, and P45-2 were significantly lower than those in PM. The concentration of N was the highest in leaves of plants grown in P45-1 or P45-2 amended media, and the concentrations of P, Ca, and zinc (Zn) in leaves were lower in individual growing medium P45-1 or P45-2 than in PM and PL. The pH of PM/P45-1/3:1 or PM/P45-2/3:1 media was maintained at optimal level (5.8-5.9) and the concentrations of macro- and micro-elements in the media and leaves were considered to be optimal levels. Therefore, mixing three parts PM with one part P45-1(PM:P45-1/3:1) or P45-2 (PM:P45-2/3:1) is recommended for improved growth and flowering in salvia. This suggests that P45-1 or P45-2 can replace PL as an inert material to prepare growing medium.

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.

Active Photonic Metadevice Technology (능동 광메타 디바이스 기술 동향)

  • Hwang, C.S.;Hong, S.H.;Hwang, C.Y.;Cho, S.M.;Kim, Y.H.;Suh, D.;Sim, J.S.;Lee, J.I.;Lee, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.81-93
    • /
    • 2018
  • Metamaterials are artificial media that can control the properties of waves at will. Active photonic metadevice technologies cover the device and material technologies that control the visible and IR light through an external signal (mainly an electrical signal). The application areas of active photonic metadevices are tremendous for example holography, active HOE, bio imaging, IR imaging, telecommunication, and optoelectronic devices. In this paper, the technical trends and prospects of active metamaterials, active meta holography, active meta devices, nano-optical telecommunication devices, and IR imaging meta devices are reviewed.

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Effect of Dietary Mulberry leaf on the Composition of Intestinal Microflora in SD Rats (식이 뽕잎이 흰쥐의 장내균총 조성에 미치는 영향)

  • Lee, Heui-Sam;Jeon, Ho-Jung;Lee, Sang-Duk;Moon, Jae-Yu;Kim, Ae-Jung;Ryu, Kang-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.252-255
    • /
    • 2001
  • This study was performed to investigate the influence of dietary mulberry leaf on the intestinal microflora in rats. Rats were fed each experimental diets containing 1%, 10% of mulberry leaf powder for 4 weeks. Total viable counts and the numbers of Bifidobacterium, Lactobacillus, Clostridium, E. coli and Staphylococcus were determined by nonselective media and various selective media. A decrease in the intestinal population of Clostridium was shown in dietary mulberry leaf group. The E. coli and Staphylococcus populations decreased in dietary mulberry leaf group compared with control group. Methanol extract and fractions of mulberry leaf were subjected to an in vitro screening test for their growth-inhibitory activity. Methanol extract and Water fraction of Mulberry leaves showed weak growth-inhibition of Clostridium perfringens. These results indicate that the composition of gastrointestinal microflora was improved by treatment of mulberry leaves in SD rats and was very effective for growth inhibition of the intestinal harmful bacteria in intestine. Therefore, the mulberry leaves as a newly bio-material can be a useful material for physiologically functional food.

  • PDF

Development of Biodegradable Polymeric Membrane for Interventional Procedure: Preliminary Study (인터벤션 시술을 위한 생분해성 고분자막의 개발 : 예비연구)

  • Bang, Jung-Wan;Hyun, Chang-Yong;Kim, Tae-Hyung;So, Woon-Young;Kim, Jin-Tae;Kim, Sang-Sub;Jung, Hee Dong;Heo, Yeong Cheol
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • This study was to evaluate clinical feasibility of biodegradable polymeric membrane for interventional procedure in preliminary study. Bio-degradable polymetric membrane was produced into a solution by mixing hyaluronic acid powder with NaOH solution in a heating mantle. Three different concentrations of contrast media (10, 20, and 30 vol%) were added to the produced soluble powder, and vertical agitation was performed for 12 hours at a speed of 100 to 200 rpm at a room temperature. It was freeze dried for 24 hours at a temperature $80^{\circ}C$. Pressure on the freeze dried sample was exerted by a hydraulic press in order to form the freeze dried sample into a membrane. The membrane produced with varying contrast medium concentration was visually examined by a scanning electron microscope and radiographically inspected. Under the visual examination, the higher the concentration of contrast medium, the rougher the surface. Radiographic transparency was similar under all conditions of fluoroscopic radiography, simple radiography, and serial radiography. In conclusion, this preliminary study verified that bio-degradable membrane produced with hyaluronic acid was a material with clinical usability.

Effect of Medium Materials on Growth and Yield of Sweet Pepper(Capsicum annuum L.) in Long Term Bag-Culture (배지종류가 단고추 자루식 장기 양액재배시 생육 및 수량에 미치는 영향)

  • 김경제;나상욱;우인식;강영식;허일범;김진한
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.80-85
    • /
    • 1997
  • This study was conducted to select useful medium material as a replacement for the rockwool in long term bag-culture of sweet pepper. The sole use of perlite and carbonized rice hull(CRH) as well as their mixture with various combinations were compared to the rockwool. The results are summarized as the followings : 1. Plant height and number of leaves did not significantly differ among media. However, in the mixture of CRH(1) : Perlite(1), stem diameter was thicker; plant weight and root weight were heavier, and T/R ratio was lower. 2. Although fruit length and number of fruits did not significantly differ among media, the mixture of CRH(1) : Perlite(1) provided longer fruit length, more fruits, heavier fruit weight, and greater yield. 3. Monthly yield was continuously increased from the first harvest in November to the harvest in May next year. The amount of increase in the fruit yield of the mixture of CRH(1) : Perlite(1) from the first harvest to the final harvest was significantly greater than the amount of increase of other media. 4. The amount of total nitrogen and phosphate was higher in mixture of CRH (1) : Perlite(1), while the amount of other elements did not significantly differ among mixtures.

  • PDF

Growth Characteristics of Strawberry Runner Plants according to Mixing Ratio of Reused Rockwool, Decomposed Granite, and Horticultural Media (재사용 암면, 마사토 및 원예용 상토의 혼합비율에 따른 딸기 자묘의 생육 특성)

  • Jeong, Ji-Hee;Bae, Hyo Jun;Ko, Baul;Ku, Yang Gyu;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • This study was conducted to investigate the horticultural media + decomposed granite + reused rock wool in the following mixing ratio: Control = 100:0, M1 = 80:0:20, M2 = 60:30:10, M3 = 40:30:30, M4 = 30:40:30, M5 = 0:50:50 (reused rockwool : decomposed granite : horticultural media) and develop the physicochemical properties and the growth of 'Sulhyang' strawberry runner plant. In the physical aspect of the horticultural media, statistical differences were recognized that the bulk density and particle density were lower in the control and M1. But the bulk density and particle density were high in the M3, M4, and M5, because it had high mixing ratio between recycled rock wool and decomposed granite. EAW and WBC showed a similar tendency. The air porosity and total porosity were higher in control and M1 than M3, M4, M5. Exchangeable cation (K+, Ca2+, Na+, Mg2+) and base replacement capacity (CEC) were higher in control and M1, than M2, M3, M4, and M5. As a result of the cultivation of 'Sulhyang' runner plant, the plant length was long in M2, 32.1 cm and smaller than M5 to 28.4 cm. However, if the crown diameter, which is the growth indicator of the runner plant, all 6 treatments were formed 11.23 mm-12.03 mm, which is considered to be suitable for the growth of the runner plant. There wasn't a statistical difference between the weight and dry weight of the root. As a result, the growth difference of the seedlings by the horticulture media was similar. Therefore, considering the physical properties of the horticultural media, it was judged that the air porosity and total porosity would be improved when the recycled rock wool and the decomposed granite were properly mixed rather than the use of the horticultural media as a single medium, which would be advantageous for irrigation management.