DOI QR코드

DOI QR Code

Active Photonic Metadevice Technology

능동 광메타 디바이스 기술 동향

  • Published : 2018.12.01

Abstract

Metamaterials are artificial media that can control the properties of waves at will. Active photonic metadevice technologies cover the device and material technologies that control the visible and IR light through an external signal (mainly an electrical signal). The application areas of active photonic metadevices are tremendous for example holography, active HOE, bio imaging, IR imaging, telecommunication, and optoelectronic devices. In this paper, the technical trends and prospects of active metamaterials, active meta holography, active meta devices, nano-optical telecommunication devices, and IR imaging meta devices are reviewed.

Keywords

HJTOCM_2018_v33n6_81_f0001.png 이미지

(그림 1) 능동 메타 픽셀 개념도

HJTOCM_2018_v33n6_81_f0002.png 이미지

(그림 2) (a) 상 변화 물질 및 (b) 그래핀 기반의 재구성 가능한 홀로그램

HJTOCM_2018_v33n6_81_f0003.png 이미지

(그림 3) ITO 박막을 이용한 능동 메타 소자

HJTOCM_2018_v33n6_81_f0004.png 이미지

(그림 4) 다이오드를 이용한 능동 메타 소자

HJTOCM_2018_v33n6_81_f0005.png 이미지

(그림 5) 가역 전착 기술을 이용한 위상 변조 소자의 개념도

HJTOCM_2018_v33n6_81_f0006.png 이미지

(그림 6) 가역 전착 기술을 이용한 홀로그래피 소자의 구조와 동작 영상

HJTOCM_2018_v33n6_81_f0007.png 이미지

(그림 7) (a) 메타표면 기반 안테나 및 (b) 열 질량 조절 구조와 (c) 전기 특성

HJTOCM_2018_v33n6_81_f0008.png 이미지

(그림 8) 전압 인가를 통한 메타표면의 흡수 대역 천이, 분극 및 반사광 특성 조절

References

  1. V.G. Veselago, "The Electrodynamics of Substances with Simultaneously Negative Values of ${\varepsilon}$ and ${\mu}$," Sov. Phys. Uspekhi, vol. 10 , no. 4, 1968, pp. 509-514. https://doi.org/10.1070/PU1968v010n04ABEH003699
  2. J.B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett., vol. 85, 2000, Article no. 3966.
  3. D.R. Smith et al., "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett., vol. 84, 2000, Article no. 4184.
  4. D. Schurig et al., "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Sci., vol. 314, Nov. 2006, pp. 977-980. https://doi.org/10.1126/science.1133628
  5. N. Fang et al., "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Sci., vol. 308, Apr. 2005, pp. 534-537. https://doi.org/10.1126/science.1108759
  6. Z. Liu et al., "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Sci., vol. 315, no. 5819, Mar. 2007, p. 1686. https://doi.org/10.1126/science.1137368
  7. N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Sci., vol. 317, no. 5845, Sept. 2007, pp. 1698-1702. https://doi.org/10.1126/science.1133268
  8. J. Valentine et al., "Three-Dimensional Optical Metamate-Rial with a Negative Refractive Index," Nature, vol. 455, Sept. 2008, pp. 376-379. https://doi.org/10.1038/nature07247
  9. J.K. Gansel et al., "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Sci., vol. 325, no. 5947, Sept. 2009, pp. 1513-1515. https://doi.org/10.1126/science.1177031
  10. G.V. Naik, V. M. Shalaev, and A. Boltasseva, "Alternative Plasmonic Materials: Beyond Gold and Silver," Adv. Mater., vol. 25, no. 24, June 2013, pp 3264-3294 https://doi.org/10.1002/adma.201205076
  11. H. Caglayan et al., "Near-Infrared Metatronic Nanocircuits by Design," Phys. Rev. Lett., vol. 111, Aug. 2013, Article no. 073904.
  12. I. Liberal and N. Engheta, "Near-Zero Refractive Index Photonics," Nature Photon., vol. 11, 2017, pp. 149-158 https://doi.org/10.1038/nphoton.2017.13
  13. W. Li et al., "Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber," Adv. Mater., vol. 26, no. 47, Dec. 2014, pp. 7959-7965 https://doi.org/10.1002/adma.201401874
  14. U. Guler et al., "Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide," Adv. Opt. Mat., vol. 5, No. 7, Apr. 2017, Article no. 1600717.
  15. M. Chirumamilla et al., "Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars," Adv. Opt. Mat., vol. 5, no. 22, Nov. 2017, Article no. 1700552.
  16. O. Balci et al., "Electrically Swichable Metadevice vis Graphene," Sci. Adv., vol. 4, no. 1, Jan. 2018, pp. 1749:1-1749:9.
  17. T.T. Kim et al., "Electrically Tunable Slow Light Using Graphene Metamaterials," ACS Photon., vol. 5, no. 5, 2018, pp. 1800-1807. https://doi.org/10.1021/acsphotonics.7b01551
  18. T. Chung et al., "Au/Ag Bimetallic Nanocomposites as a Highly Sensitive Plasmonic Material," in Plasmonics, Springer US: USA, 2018.
  19. Y. Hashimoto et al., "Au-Ag-Cu Nano-Alloys: Tailoring of Permittivity," Sci. Rep., vol. 6, 2016, Article no. 25010.
  20. S. J. Kim et al., "Chemically Engineered Au-Ag Plasmonic Nanostructures to Realize Large Area and Flexible Metamaterials," ACS Appl. Mat. Inter., vol. 10, no. 30, 2018, pp. 25653-25659.
  21. D. Garoli et al., "Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared," ACS Photon., vol. 5, no. 8, 2018, pp. 3408-3414. https://doi.org/10.1021/acsphotonics.8b00676
  22. B.D. Willts et al., "Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples," ACS photon., vol. 3, no. 10, 2016, pp.1888-1896. https://doi.org/10.1021/acsphotonics.6b00400
  23. A.T. Fafarman et al., "Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals," Nano Lett., vol. 13, no. 2, 2013, pp. 350-357. https://doi.org/10.1021/nl303161d
  24. A. Karvounis et al., "All Dielectric Phase Change Reconfigurable Metasurface," Appl. Phy. Lett., vol. 109, 2016, Article no. 051103.
  25. T. Paik et al., "Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystals," ACS Nano, vol. 8, no. 1, 2014, pp. 797-806. https://doi.org/10.1021/nn4054446
  26. X. Ni, A.V. Kildishev, and V.M. Shalaev, "Metasurface Holograms for Visible Light," Nature Commun., vol. 4, 2013, Article no. 3807.
  27. S. Larouche et al., "Infrared Metamaterial Phase Holograms," Nature Mater., vol. 11, 2012, pp. 450-454. https://doi.org/10.1038/nmat3278
  28. L.L. Huang et al., "Three-Dimensional Optical Holography Using a Plasmonic Metasurface," Nature Commun., vol. 4, 2013, Article no. 2808.
  29. G.-Y. Lee et al., "Complete Amplitude and Phase Control of Light Using Broadband Holographic Metasurfaces," Nanoscale, vol. 10, no. 9, 2018, pp. 4237-4245. https://doi.org/10.1039/C7NR07154J
  30. Q. Wang et al., "Optically Reconfigurable Metasurfaces and Photonic Devices Based on Phase Change Materials," Nature Photon., vol. 10, no. 1, 2015, pp. 60-65. https://doi.org/10.1038/nphoton.2015.247
  31. S.-Y. Lee et al., "Holographic Image Generation with a Thin-Film Resonance Caused by Chalcogenide Phase-Change Material," Sci. Rep., vol. 7, 2017, Article no. 41152.
  32. X. Li et al., "Athermally Photoreduced Graphene Oxides for Three-Dimensional Holographic Images," Nature Commun., vol. 6, 2015, Article no. 6984.
  33. L. Li et al., "Electromagnetic Reprogrammable Coding-Metasurface Holograms," Nature Commun., vol. 8, no. 1, 2017, Article no. 197.
  34. K. Dong et al., "A Lithography-Free and Field-Programmable Photonic Metacanvas," Adv. Mater., vol. 30, no. 5, Feb. 2018, Article no. 1703878.
  35. Y.-W. Huang et al., "Gate-Tunable Conducting Oxide Metasurfaces," Nano Lett., vol. 16, no. 9, 2016, pp. 5319-5325. https://doi.org/10.1021/acs.nanolett.6b00555
  36. O. Balci et al., "Electrically Switchable Metadevices via Graphene," Sci. Adv., vol. 4, no. 1, Jan. 2018, Article no. 1749.
  37. C. Huang et al., "Dynamical Beam Manipulation Based on 2-bit Digitally-Controlled Coding Metasurface," Sci. Rep., vol. 7, 2017, Article no. 42302.
  38. J.P. Ziegler and B. M. Howard, "Applications of Reversible Electrodeposition Electrochromic Devices," Sol. Energy Mater. Sol. Cells, vol. 39, no. 2-4, Dec. 1995, pp. 317-331. https://doi.org/10.1016/0927-0248(95)00067-4
  39. S. Araki et al., "Electrochemical Optical-Modulation Device with Reversible Transformation Between Transparent, Mirror, and Black," Adv. Mater., vol. 24, no. 23, June 2012, pp. OP122-OP126.
  40. S.M. Cho et al., "New Switchable Mirror Device with a Counter Electrode Based on Reversible Electrodeposition," Sol. Energy Mater. Sol. Cells, vol. 179, June 2018, pp. 161-168. https://doi.org/10.1016/j.solmat.2017.11.007
  41. S.M. Cho et al, "Switchable Holographic Device Based on Reversible Electrodeposition," Adv. Mater. Technol., 2018, https://doi.org/10.1002/admt.201800478
  42. L. Novotnu, N. van Hulst, "Antennas for light," Nat. Photonics, vol. 5, Fed. 2011, pp 83-90. https://doi.org/10.1038/nphoton.2010.237
  43. F. Capasso et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Sci., vol. 333, no. 6064, Oct. 2018, pp. 333-337.
  44. V.M. Shalaev et al., "Broadband Light Bending with Plasmonic Nanoantennas," Sci., vol. 335, no. 6067, Jan. 2012, p. 427. https://doi.org/10.1126/science.1214686
  45. E. Yablonovitch et al., "Optical Antenna Enhanced Spontaneous Emission," Proc. National Academy Sci. United States of Am., vol. 112, no. 6, Jan. 2015, pp. 1704-1709. https://doi.org/10.1073/pnas.1423294112
  46. S. Fortuna, "Integrated Nanoscale Antenna-LED for On-Chip Optical Communication," Technical Report, UCB/EECS-2017-144, 2017.
  47. Y.S. Kivshar et al., "Light-Emitting Halide Perovskite Nanoantennas," Nano Lett., vol. 18, no. 2, 2018, pp. 1185-1190. https://doi.org/10.1021/acs.nanolett.7b04727
  48. M.E. Badawe, T.S. Almoneef, and O.M. Ramahi, "A True Metasurface Antenna," Sci. Rep., vol. 6, 2016, Article no. 19268.
  49. J.-Y. Jung et al., "Infrared Broadband Metasurface Absorber for Reducing the Thermal Mass of a Microbolometer," Sci. Rep., vol. 7, 2017, Article no. 430.
  50. F. Yi et al., "Voltage Tuning of Plasmonic Absorbers by Indium tin Oxide," Appl. Phys. Lett., vol. 102, 2013, Article no. 221102.
  51. Y.W. Huang et al., "Gate-Tunable Conducting Oxide Metasurfaces," Nano Lett., vol. 16, no. 9, 2016, pp. 5319-5325. https://doi.org/10.1021/acs.nanolett.6b00555
  52. J. Park et al., "Dynamic Reflection Phase and Polarization Control in Metasurfaces," Nano Lett., vol. 17, no. 1, 2017, pp. 407-413. https://doi.org/10.1021/acs.nanolett.6b04378