• Title/Summary/Keyword: Bio-mechanical analysis

Search Result 236, Processing Time 0.024 seconds

Development of Hip Joint Mechanical Stem for Minimally Invasive Surgery (최소침습술을 위한 고관절 메커니컬 스템의 개발)

  • Lee, Sunghyun;Bae, Ji-Yong;Jeon, Insu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.703-708
    • /
    • 2013
  • Conventional total hip joint replacement(THR) surgery requires a long incision and long rehabilitation time. The stem used in THR is inserted into the cancellous bone of the femur where it plays the role of the artificial joint. Minimally invasive surgery(MIS) has been devised to reduce muscle damage to patients. In this study, a mechanical stem was developed on the basis of MISto reduce the incision length through the principle of the gear. The mechanical stem consists of six components. A prototypical model for a mechanical stem was fabricated using an acryl-based polymer, and its workability was confirmed. To actualize the mechanical stem, a three-dimensional Bio-CAD modeling technique was applied. The hip joint area based on computed tomography(CT) was reconstructed. The safety of the mechanical stem by applying more load than the weight of a man under virtual surgery environment conditions was confirmed by finite element analysis.

Interfacial Shear Strength and Thermal Properties of Electron Beam-Treated Henequen Fibers Reinforced Unsaturated Polyester Composites

  • Pang Yansong;Cho Donghwan;Han Seong Ok;Park Won Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.453-459
    • /
    • 2005
  • Natural fiber henequen/unsaturated polyester (UPE) composites were fabricated by means of a compression molding technique using chopped henequen fibers treated at various electron beam (EB) dosages. The interfacial shear strength (IFSS), dynamic mechanical properties, and thermal expansion behavior were investigated through a single fiber microbonding test, fractographic observation, dynamic mechanical analysis, and thermomechanical analysis, respectively. The results indicated that the interfacial and dynamic mechanical properties significantly depended on the level of the EB treatment irradiated onto the henequen fiber surfaces. The effect of EB treatment on the IFSS, storage modulus and fracture surface of the henequen/UPE composites agreed with each other. The results of this study also suggested that the modification of henequen fiber surfaces at 10 kGy EB is the most effective for improving the interfacial properties of the henequen/UPE composites.

Hydrodynamics Analysis of Fish Locomotion Using a Biomimetic Fish Robot (생체모사 물고기 로봇을 이용한 물고기 운동의 유체역학적 해석)

  • Han, Cheol-Heui;Lee, Seung-Hee;Shin, Chang-Rok;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.435-440
    • /
    • 2007
  • Fish-mimetic robots or fish-mimetic propulsors have been developed or under construction. A mechanical system cannot have the same functions as bio-organic systems. Thus, the hydrodynamic characteristics of fish locomotion should be well understood in order to develop and control a feasible intelligent fish-mimetic robot with its optimal motion pattern known. In this paper, a mackerel-mimetic robot fish is fabricated in order to understand the hydrodynamic characteristics of fish locomotion. A simplified unsteady flow theory is also applied to the hydrodynamic analysis of the motion of the anterior part of the robotic fish. The normal and axial forces of the fish are measured by changing the amplitude and frequencies of fanning motion. It is found that the present theoretical results agree with the measured data.

  • PDF

The Effect of Disaster Prevention of Industrial Field and Failure Detection of Very Small Components for IT (IT용 초소형부품의 불량검출과 산업현장의 재해방지 효과)

  • Park, Dea-Young;Jeong, Yang Guen;Choi, Sun Mi;Byun, Jea Young;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.18-29
    • /
    • 2015
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The system was introduced into a real building and was examined by the field measurement. Judging from the measurements during three years(1999~2001), the state of the system operation was very stable through this period and it was clear that the system contributes to reduction of energy consumption for air-conditioning. Futhermore, a simulation model used the simple heat diffusion equation was developed to simulate its thermal characteristics and performances. The simulations resulted in air temperature in good agreement with the measurements. Also, from the result of numerical analysis, it is clear that the amount of heat supply by using this system is more than the amount of energy loss to the room above it. Therefore, it is concluded that this systems is very useful and the proposed numerical model can be used for the prediction of system thermal performance.

BioMEMS 기술을 이용한 바이오 샘플의 정량적 분석방법

  • Kim, Jun-Won;Kim, Ho-Jin
    • Journal of the KSME
    • /
    • v.52 no.8
    • /
    • pp.37-40
    • /
    • 2012
  • 이 글에서는 DNA, 단백질 등과 같은 생체분자(biomolecule)뿐만 아니라 세포 수준에서의 정량적 분석(quantitative analysis)을 위한 강력한 도구로서 마이크로어레이 기반의 바이오멤스 기술에 대해 소개하고자 한다.

  • PDF

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Evaluation of Mechanical Performance and Flame Retardant Characteristics of Biomass-based EVA Composites using Intumescent Flame Retardant Technology

  • Park, Ji-Won;Kim, Hoon;Lee, Jung-Hun;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.189-201
    • /
    • 2018
  • Intumescent system is a highly effective flame retardant technology that takes advantage of the mechanism of foaming and carbonization. In order to materialize Intumescent system, it is necessary to use reinforcement material to improve the strength of the material. In this study, we used kenaf as a natural fiber to manufacture intumescent/EVA (ethylene vinyl acetate) composites to improve mechanical and flame retardant performance. Finally two materials with different particle shape are applied to one system. Therefore, the influence factors of the particles with different shapes on the composite material were analyzed based on the tensile test. For this purpose, we have used the tensile strength analysis model and confirmed that it can only act as a partial strength reinforcement due to weak binding force between the matrix and particles. In the combustion characteristics analysis using cone calorimeter and UL 94, the combustion characteristics were enhanced as the content of Intuemscent was increased. As the content of kenaf increased, combustion characteristics were strengthened and carbonization characteristics were weakened. Through the application of kenaf, it can be confirmed that elastic modulus improvement and combustion characteristics can be strengthened, which confirmed the possibility of development of environmentally friendly flame retardant materials.

The Analysis of Frame Structure in Farm Vehicle (농장차의 프레임 구조 해석)

  • Pratama, Pandu Sandi;Supeno, Destiani;Woo, Ji-Hee;Lee, Eun-Sook;Park, Cun-Sook;Yoon, Woo-Jin;Chung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • An agriculture machines are subjected to different loads conditions. Due to this loads variations there will be certain deformations and stress which affect the performance of the electric vehicle in adverse manner. The purpose of this paper is to analyze the total deformation and stress of the electric farm vehicle middle frame based on the finite element method. The proposed electric farm vehicle has lifting and dumping capability. Therefore, in this research four operational condition such as normal condition, dumping condition, lifting condition, and lifting-dumping condition was analyzed. In this research, the design for whole frame structure is elaborated. According to the mechanical characteristics of the frame, materials are selected and manufacturability requirements are limited. Based on ANSYS 15 software, the finite element model of electric farm vehicle is established to carry out static analysis on full-loaded conditions. The simulation results shows that the proposed design meet the strength requirements and displacement requirements. The maximum deformation 0.53611 mm and maximum stress 30.163 MPa occurred at lifting-dumping condition.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.