• Title/Summary/Keyword: Bio-material

Search Result 1,225, Processing Time 0.025 seconds

The Synthesis and Characterization of Mesoporous Microbead Incorporated with CdSe/ZnS QDs (양자점이 고밀도화된 마이크로 비드의 제조 및 특성)

  • Lee, Ji-Hye;Hyun, Sang-Il;Lee, Jong-Huen;Koo, Eun-Hae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.657-663
    • /
    • 2012
  • The spherical mesoporous silica is synthesized and incorporated with CdSe/ZnS quantum dots(QDs) for preparing micro beads to detect toxic and bio-materials with high sensitivity. The spherical silica beads with the brunauer-emmett-telle(BET) average pore size of 15 nm were prepared with a ratio 1, 3, 5-trimethylbenzen, as a swelling agent, to the block-copolymer template surfactant of over 1 and under vigorous mixing condition. The surface of spherical mesoporous silica is modified using octadecylsilane for incorporating QDs. Based on photoluminescence(PL) spectra, the relative brightness of mesoporous silica beads incorporated with 10 nM of QDs is 79,000 times brighter than that of Rodamine 6 G.

Optimization of Algerian Thymus fontanesii Boiss. & Reut Essential Oil Extraction by Electromagnetic Induction Heating

  • Ali, Lamia Sid;Brada, Moussa;Fauconnier, Marie-Laure;Kenne, Tierry
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • The present study deals with the determination of optimal values of operating parameters such as the temperature of heating, the mass of the plant material and the volume of water leading to the best yield of electromagnetic induction (EMI) heating extraction of Algerian Thymus fontanesii essential oil. After an appropriate choice of the three critical variables, eight experiments leaded to a mathematical model as a first-degree polynomial presenting the response function (yield) in the relation to the operating parameters. From the retained model, we were able to calculate the average response, the different effects and their interactions. The maximum of essential oil recovery percentage relative to the initial mass of plant material was 1.69%, and was obtained at ($140^{\circ}C$, 250 g and 4.5 L). The chemical composition of the Algerian T. fontanesii essential oil under the obtained optimal conditions ($140^{\circ}C$, 250 g and 4.5 L), determined by GC/MS and GC/FID, reveled of the presence of major components such as: carvacrol ($70.6{\pm}0.1%$), followed by p-cymene ($8.2{\pm}0.2%$).

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

Experimental Study on Compression Behavior between Multi-layered Corrugated Structure and EPS Packaging Materials (골판지 적층재와 EPS 사이의 압축거동에 대한 실험적 연구)

  • Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • The evaluation of the compression behavior of the cushioning material is of importance to achieve appropriate packaging design. In order to change packaging design from polymeric-based to more eco-friendly cellulose-based nire effectively, comparative study on the compression behavior between these two packaging materials is crucial. In this study, the stress-strain behavior, hysteresis loss, and response characteristics for cyclic loading were analyzed through compression tests on multi-layered corrugated structure (MLCS) and expanded polystyrene (EPS) packaging materials. MLCS produced in Korea is produced by winding a certain number of single-faced corrugated paperboard, and the compression behavior of this material was turned out to be 6 stages: elastic stage, first buckling stage, sub-buckling stage, densification stage, last buckling stage and high densification stage. On the other hand, EPS's compression behavior was in 3 stages: linear elastic stage, collapse plateau, and densification stage. The strain energy per unit volume (strain energy density) of MLCS did not differ depending on the material thickness, but it showed a clear difference depending on the raw material and flute type. Hysteresis loss of MLCS ranged from 0.90 to 0.93, and there were no significant differences in the raw material and flute type. These values were about 5 to 20% greater than the hysteresis of the EPS (about 0.78 to 0.87).

Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia

  • Oh, Ju-Won;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi;Lee, Min-Ho;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.349-357
    • /
    • 2015
  • PURPOSE. The purpose of this study was to assess the impact of the core materials, thickness and fabrication methods of veneering porcelain on prosthesis fracture in the porcelain fused to metal and the porcelain veneered zirconia. MATERIALS AND METHODS. Forty nickel-chrome alloy cores and 40 zirconia cores were made. Half of each core group was 0.5 mm-in thickness and the other half was 1.0 mm-in thickness. Thus, there were four groups with 20 cores/group. Each group was divided into two subgroups with two different veneering methods (conventional powder/liquid layering technique and the heat-pressing technique). Tensile strength was measured using the biaxial flexural strength test based on the ISO standard 6872:2008 and Weibull analysis was conducted. Factors influencing fracture strength were analyzed through three-way ANOVA (${\alpha}{\leq}.05$) and the influence of core thickness and veneering method in each core materials was assessed using two-way ANOVA (${\alpha}{\leq}.05$). RESULTS. The biaxial flexural strength test showed that the fabrication method of veneering porcelain has the largest impact on the fracture strength followed by the core thickness and the core material. In the metal groups, both the core thickness and the fabrication method of the veneering porcelain significantly influenced on the fracture strength, while only the fabrication method affected the fracture strength in the zirconia groups. CONCLUSION. The fabrication method is more influential to the strength of a prosthesis compared to the core character determined by material and thickness of the core.

Mathematical Model and Design Optimization of Reduction Gear for Electric Agricultural Vehicle

  • Pratama, Pandu Sandi;Byun, Jae-Young;Lee, Eun-Suk;Keefe, Dimas Harris Sean;Yang, Ji-Ung;Chung, Song-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In electric agricultural machine the gearbox is used to increase torque and lower the output speed of the motor shaft. The gearbox consists of several shafts, helical gears and spur gears works in series. Optimization plays an important role in gear design as reducing the weight or volume of a gear set will increase its service life and improve the bearing capacity. In this paper the basic design parameters for gear like shaft diameter and face width are considered as the input variables. The bending stress and material volume is considered as the objective function. ANSYS was used to investigate the bending stress when the variable was changed. Artificial Neural Network (ANN) was used to obtain the mathematical model of the system based on the bending stress behaviour. The ANN was used since the output system is nonlinear. The Genetic Algorithm (GA) technique of optimization is used to obtain the optimized values of shaft diameter and face width on the pinion based on the ANN mathematical model and the results are compared as that obtained using the traditional method. The ANN and GA were performed using MATLAB. The simulation results were shown that the proposed algorithm was successfully calculated the value of shaft diameter and face width to obtain the minimal bending stress and material volume of the gearbox.

[ $\alpha$ ]-Glucosidase Inhibitors from the Roots of Codonopsis lanceolata Trautv

  • Jung, Suk-Whan;Han, Ae-Jin;Hong, Hae-Jin;Choung, Myoung-Gun;Kim, Kwan-Su;Park, Si-Hyung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.162-164
    • /
    • 2006
  • The roots of Codonopsis lanceolata afforded tangshenoside I(1) and $\beta$-adenosine (2) as $\alpha$-glucosidase inhibitors. Their structures were unambiguously determined by 1D and 2D NMR data including HMQC and HMBC experiments. Compounds 1 and 2 exhibited weak $\alpha$-glucosidase inhibitory activities in vitro with $IC_{50}$ of 1.4 and 9.3 mM, respectively.

Evaluation of Shear Strength at Interface Between Geotextile and Cementitious Binder Materials (시멘트계 결합재가 적용된 지오텍스타일의 접촉면 전단강도 평가)

  • Son, Dong-Geon;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • Multi-layered geotextile tubes may have problems on its stability when used as cofferdam. This study presents the shear strength characteristics at the interface between geotextiles and a cementitious binder material to improve the stability of the multi-layered geotextile tubes. In this study, two different types of geotextiles are used. After mixing with a rapid setting cement, fly ash, sand, accelerator, and water, the cementitious binder material is prepared at the interface between two geotextile samples and cured under water for a desired period. The specimen is placed on upper and lower direct shear boxes by using clamping systems. A series of direct shear tests for two different geotextiles are performed along the curing time under three vertical stresses. Experimental results show that the shear strength at the interface between the cementitious binder material and geotextiles is greater than that at the interface between two geotextiles. For two types of geotextiles, apparent cohesion occurs at the interface between the cementitious binder material and geotextiles. In addition, the friction angles for any curing time are improved, compared to the interface between two geotextiles. The cementitious binder material suggested for the interface between two geotextiles may be useful for the reinforcement of multi-layered geotextile tubes.

Fishing performance of a coastal drift net in accordance with materials of the environmentally-friendly biodegradable net twine (친환경 생분해성 그물실의 재질에 따른 연안 유자망의 어획성능 특성)

  • KIM, Seonghun;KIM, Pyungkwan;JEONG, Seongjae;BAE, Jaehyun;LIM, Jihyun;OH, Wooseok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • The objective of this study was to estimate physical properties and fishing performances of net twine with improved PBS copolymer resin (Bio-new), the existing PBS/PBAT blending resin (Bio-old) and commercial Nylon (Nylon). The tensile strength of Bio-new monofilament was equal to Bio-old and the elongation of Bio-new was about 6 % higher than that of Bio-old in wet condition. The physical properties tests were carried out to estimate breaking load and stiffness in dry and wet conditions, respectively. In the results, the breaking load of Nylon netting was the highest whereas the elongation of Bio-new was 1.4 times higher than that of Nylon netting in wet condition. The breaking load of Bio-old netting was about 9.2 % higher than that of Bio-new netting. However, the elongation of the Bio-new netting was about 3% higher than that of Bio-old. The stiffness of the Bio-new compared to Bio-old was improved about 34 % in dry condition and about 32 % in wet condition. The filed experiments of the fishing performance were conducted with three kinds of drift nets with different netting materials in the coastal sea of Jeju. The each experimental drift net made of different materials showed the similar fishing performance. Bio-old drift net yielded less catches of small sized yellow croaker than other drift nets. The netting materials affected the fishing performance and length distribution of catches in the drift nets.

THE EFFECT OF THE BIORESORBABLE COLLAGEN MEMBRANE ON THE REGENERATION OF BONE DEFECT BY USING THE MIXTURE OF AUTOGRAFT AND XENOGRAFT BONE

  • Lee Jung-Min;Kim Yung-Soo;Kim Chang-Whe;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.325-341
    • /
    • 2003
  • Statement of problem: In cases where bony defects were present, guided bone regenerations have been performed to aid the placement of implants. Nowadays, the accepted concept is to isolate bone from soft tissue by using barrier membranes to allow room for generation of new bone. Nonresorbable membranes have been used extensively since the 1980's. However, this material has exhibited major shortcomings. To overcome these faults, efforts were made to develop resorbable membranes. Guided bone regenerations utilizing resorbable membranes were tried by a number of clinicians. $Bio-Gide^{(R)}$ is such a bioresorbable collagen that is easy to use and has shown fine clinical results. Purpose: The aim of this study was to evaluate the histological results of guided bone regenerations performed using resorbable collagen membrane($Bio-Gide^{(R)}$) with autogenous bone, bovine drived xenograft and combination of the two. Surface morphology and chemical composition was analyzed to understand the physical and chemical characteristics of bioresorbable collagen membrane and their effects on guided bone regeneration. Material and methods: Bioresorbable collagen membrane ($Bio-Gide^{(R)}$), Xenograft Bone(Bio-Oss), Two healthy, adult mongrel dogs were used. Results : 1. Bioresorbable collagen membrane is pure collagen containing large amounts of Glysine, Alanine, Proline and Hydroxyproline. 2. Bioresorbable collagen membrane is a membrane with collagen fibers arranged more loosely and porously compared to the inner surface of canine mucosa: This allows for easier attachment by bone-forming cells. Blood can seep into these spaces between fibers and form clots that help stabilize the membrane. The result is improved healing. 3. Bioresorbable collagen membrane has a bilayered structure: The side to come in contact with soft tissue is smooth and compact. This prevents soft tissue penetration into bony defects. As the side in contact with bone is rough and porous, it serves as a stabilizing structure for bone regeneration by allowing attachment of bone-forming cells. 4. Regardless of whether a membrane had been used or not, the group with autogenous bone and $Bio-Oss^{(R)}$ filling showed the greatest amount of bone fill inside a hole, followed by the group with autogenous bone filling, the group with blood and the group with $Bio-Oss^{(R)}$ Filling in order. 5. When a membrane was inserted, regardless of the type of bone substitute used, a lesser amount of resorption occurred compared to when a membrane was not inserted. 6. The border between bone substitute and surrounding bone was the most indistinct with the group with autogenous bone filling, followed by the group with autogenous bone and $Bio-Oss^{(R)}$ filling, the group with blood, and the group with $Bio-Oss^{(R)}$ filling. 7. Three months after surgery, $Bio-Gide^{(R)}$ and $Bio-Oss^{(R)}$ were distinguishable. Conclusion: The best results were obtained with the group with autogenous bone and $Bio-Oss^{(R)}$ filling used in conjunction with a membrane.