• Title/Summary/Keyword: Bio-inspiration

Search Result 13, Processing Time 0.028 seconds

Effects of Intra-abdominal Pressure with Visual Feedback on Muscle Activation of Upper Trapezius and Sternomastoid during Forced Inspiration in Individuals with Costal Respiration

  • Kim, Kwang-Su;Shin, Hwa-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.2
    • /
    • pp.75-79
    • /
    • 2020
  • Purpose: This study analyzed the immediate effects of intra-abdominal pressure with visual feedback on the muscle activation of the upper trapezius and sternomastoid during natural inspiration and forced inspiration in individuals with costal respiration. Methods: The eighteen individuals with upper costal breathing pattern participated in this study. Surface electromyography was used to analyze the muscle activity of the upper trapezius and sternomastoid during natural inspiration and forced inspiration before and after intra-abdominal pressure. Results: A significant difference in muscle activation was observed with the muscle type, inspiration type, and test session (p<0.05). The muscle activities of the sternomastoid and upper trapezius decreased significantly during forced inspiration after intra-abdominal pressure training (p<0.05). On the other hand, there was no significant difference during natural inspiration in both muscles (p>0.05). A comparison of the difference between the pre-test and post-test during forced inspiration revealed the upper trapezius to be significantly larger than the sternomastoid (p<0.05). No significant difference was noted during natural inspiration (p>0.05). Conclusion: The intra-abdominal pressure has positive effects on correcting the breathing patterns in individuals with costal respiration.

Smart body armor inspired by flow in bone

  • Tate, Melissa Louise Knothe
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • An understanding of biomaterials' smart properties and how biocomposite materials are manufactured by cells provides not only bio-inspiration for new classes of smart actuators and sensors but also foundational technology for smart materials and their manufacture. In this case study, I examine the unique smart properties of bone, which are evident at multiple length scales and how they provide inspiration for novel classes of mechanoactive materials. I then review potential approaches to engineer and manufacture bioinspired smart materials that can be applied to solve currently intractable problems such as the need for "smart" body armor or decor cum personal safety devices.

Soft robotics: A solid prospect for robotizing the natural organisms

  • Tahir, Ahmad M.;Naselli, Giovanna A.;Zoppi, Matteo
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.69-97
    • /
    • 2018
  • Innovation is considered as key to ensure continuous advancement and firm progress in any field. Robotics, with no exception, has gained triumph and approval based on its strength to address divers range of applications as well as its capacity to adapt new ways and means to enhance its applicability. The core of novelty in robotics technology is the perpetual curiosity of human beings to imitate natural systems. This desire urges to continuously explore and find new feet. In the past, contemporary machines, in different shapes, sizes and capabilities, were developed that can perform variety of tasks. The major advantage of these developments was the ability to exhibit superior control, strength and repeatability than the corresponding systems they were replicating. However, these systems were rigid and composed of hard an underlying structure, which is a constraint in bringing into being the compliance that exists in natural organisms. Inspiration of achieving such compliance and to take the full advantage of the design scheme of biological systems compelled researchers and scientists to develop systems avoiding conventional rigid structures. This ambition, to produce biological duos, needs soft and more flexible materials and structures to realize innovative robotic systems. This new footpath to craft biological mockups facilitates further to exploit new materials, novel design methodologies and new control techniques. This paper presents an appraisal on such innovative comprehensions, conferring to their design specific importance. This demonstration is potentially useful to prompt the novelty of soft robotics.

Artificial Adhesive Surfaces Mimicking Gecko Setae: Novel Approaches in Surface Engineering

  • Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.13-16
    • /
    • 2008
  • Surface Engineering is a field closely related to Tribology. Surfaces are engineered to reduce adhesion, friction and wear between moving components in engineering applications. On the contrary, it is also necessary to have high adhesion between surfaces so as to hold/stick surfaces together. In this context, surface engineering plays an important role. In recent times, scientists are drawing inspiration from nature to create effective artificial adhesive surfaces. This article provides some examples of novel surface engineering approaches conducted by various research groups worldwide that have significantly contributed in the creation of bio-inspired artificial adhesive surfaces.

Responses of Artificial Flow-Sensitive Hair for Raider Detection via Bio-Inspiration (침입자 탐지용 인공 유동감지모의 응답 모델링)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.355-364
    • /
    • 2010
  • Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. In these creatures, the filiform hairs function as a sensory system for raider detection. Parametric analyses of the motion response of filiform hairs are conducted by using a mathematical model of an artificial flow sensor to understand the possible operating ranges of a microfabricated device. It is found that the length and diameter of the sensory hair are the major parameters that determine the mechanical sensitivities and responses in a mean flow with an oscillating component. By changing the hair length, the angular displacement, velocity, and acceleration could be detected in a wide range of frequencies. Although the torques due to drag and virtual mass are very small, they are also very influential factors on the hair motion. The resonance frequency of the hair decreases as the length and diameter of the hair increase.

The PIV Measurements on the Respiratory Gas Flow in the Human Airway (호흡기 내 주기적 공기유동에 대한 PIV 계측)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1051-1056
    • /
    • 2006
  • The mean and RMS velocity field of the respiratory gas flow in the human airway was studied experimentally by particle image velocimetry (PIV). Some researchers investigated the airflow for the mouth breathing case both experimentally and numerically. But it is very rare to investigate the airflow of nose breathing in a whole airway due to its geometric complexity. We established the procedure to create a transparent rectangular box containing a model of the human airway for PIV measurement by combination of the RP and the curing of clear silicone. We extend this to make a whole airway including nasal cavities, larynx, trachea, and 2 generations of bronchi. The CBC algorithm with window offset (64 $\times$ 64 to 32 $\times$ 32) is used for vector searching in PIV analysis. The phase averaged mean and RMS velocity distributions in Sagittal and coronal planes are obtained for 7 phases in a respiratory period. Some physiologic conjectures are obtained. The main stream went through the backside of larynx and trachea in inspiration and the frontal side in expiration. There exist vortical motions in inspiration, but no prominent one in expiration.

Mobile Sink Path Planning in Heterogeneous IoT Sensors: a Salp Swarm Algorithm Scheme

  • Hamidouche, Ranida;Aliouat, Zibouda;Ari, Ado Adamou Abba;Gueroui, Abdelhak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2225-2239
    • /
    • 2021
  • To assist in data collection, the use of a mobile sink has been widely suggested in the literature. Due to the limited sensor node's storage capacity, this manner to collect data induces huge latencies and drop packets. Their buffers will be overloaded and lead to network congestion. Recently, a new bio-inspired optimization algorithm appeared. Researchers were inspired by the swarming mechanism of salps and thus creating what is called the Salp Swarm Algorithm (SSA). This paper improves the sink mobility to enhance energy dissipation, throughput, and convergence speed by imitating the salp's movement. The new approach, named the Mobile Sink based on Modified Salp Swarm Algorithm (MSSA), is approved in a heterogeneous Wireless Sensor Network (WSN) data collection. The performance of the MSSA protocol is assessed using several iterations. Results demonstrate that our proposal surpass other literature algorithms in terms of lifespan and throughput.

The PIV measurements on the respiratory gas flow in human airway (호흡기 내 주기적 공기유동에 대한 PIV 계측)

  • Kim, Sung-Kyun;Chung, Seong-Kyu
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.93-98
    • /
    • 2005
  • The mean and RMS velocity field of the respiratory gas flow in tile human airway was studied experimentally by particle image velocimetry(PIV). Some researchers investigated the airflow for the mouth breathing case both experimentally and numerically. But it is very rare to investigate the airflow of nose breathing in a whole airway due to its geometric complexity. We established the procedure to create a transparent rectangular box containing a model of the human airway for PIV measurement by combination of the RP and the curing of clear silicone. We extend this to make a whole airway including nasal cavities, larynx, trachea, and 2 generations of bronchi. The CBC algorithm with window offset (64*64 to 32*32) is used for vector searching in PIV analysis. The phase averaged mean and RMS velocity distributions in Sagittal and coronal planes are obtained for 7 phases in a respiratory period. Some physiologic conjectures are obtained. The main stream went through the backside of larynx and trachea in inspiration and the frontal side in expiration. There exist vortical motions in inspiration, but no prominent one in expiration.

  • PDF

A Perching Mechanism of a Quadrotor for Energy Harvesting (에너지 하베스팅을 위한 쿼드로터의 퍼칭 메커니즘 연구)

  • Choi, Hong-Cheol;Shin, Nae-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.198-204
    • /
    • 2018
  • Quadrotor with limited flight time due to battery level can have the extended mission life by applying energy harvesting technology. Bio-inspiration from the birds' locomotion of flight and perch-and-stare can make energy consumption efficient, and energy harvesting technology can generate energy. In order to charge the battery with solar power, the drones are required to be in a position without shade. In the mountainous terrain, a novel mechanism is required in order to be located stably at the top of the tree or the inclined rock. In this study, we propose an analysis of the origami structure and the concept design of the perching mechanism with two stable equilibrium states. The origami structure composed of compliant material can be applied to the perching mechanism that can be locked passively. Moreover, the experimental results of the trajectory and perching test are discussed.

A Study on the Design of High-Frequency Jet Ventilator Using PLL system (위상동기루프 방식을 이용한 고빈도 JET환기장치의 설계에 관한 연구)

  • Lee, Joon-Ha;Chung, Jae-Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 1989
  • This paper describes to design and to examine the mechanical characteristics of high frequency jet ventilator. The device consists of Phase lock loop(PLL) system, solenoid valve driving control part and Air regulating system. This study is carried out by changing several factors such as endotracheal tube(E.T. tube)diameter, injector cannula diameter, 1%, and frequency(breaths/mim.) having direct effects on the gas exchange as well as parameters of the entrained gas by venturi effects, so as to measure the tidal volume and minute volume. This system characteristics were as follows : 1) Frequency : 6-594bpm 2) Inspiration time : 1-99% 3) Variance of input air pressure : 1-30PSI.

  • PDF