• Title/Summary/Keyword: Bio-analysis

Search Result 3,880, Processing Time 0.037 seconds

Ameliorative Effect of Chitosan Complex on Miniature Pig Sperm Cryopreservation

  • Hong, Hye-Min;Sim, Ga-Young;Park, So-Mi;Lee, Eun-Joo;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.337-342
    • /
    • 2018
  • Cryopreservation is mainly used for preservation of boar sperm. However, this method stresses the sperm by reactive oxygen species (ROS), and the conception rate and the litter size are not more efficient than the liquid preservation of spermatozoa. Therefore, we use chitosan which is a natural product derived antioxidant compound. We used GnHA (chitosan+hyaluronic acid) and GnHG (chitosan hydrogel) as chitosan complexes to cryopreserve boar sperm for improve sperm metabolism and function. Sperm parameter (sperm motility, progressive motility, path velocity, straight-line velocity, curvilinear velocity) is measured by computer-assisted sperm analysis (CASA) using frozen sperm with GnHA or GnHG (0, 0.25, 0.5, 1 mg/mL), respectively. Also, lipid peroxidation analysis using malondialdehyde (MDA) is performed to confirm the antioxidative effect of chitosan in frozen spermatozoa. CASA analysis showed GnHA and GnHG are effective against cryopreserved boar sperm. And antioxidant effect is measured by lipid peroxidation analysis. GnHA and GnHG, which is chitosan complex are effective for boar sperm cryopreservation by antioxidant effect.

Petroleomic Characterization of Bio-Oil Aging using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

  • Smith, Erica A.;Thompson, Christopher;Lee, Young Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.811-814
    • /
    • 2014
  • Bio-oil instability, or aging, is a significant problem for the long-term storage of fast pyrolysis oils. We investigated bio-oil aging at the molecular level using Fourier-transform ion cyclotron resonance mass spectrometry. Petroleomic analysis suggests that bio-oil aging is resulted from the oligomerization of phenolic lignin products whereas 'sugaric' cellulose/hemicellulose products have negligible effect.

Characteristics of Protein G-modified BioFET

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.226-229
    • /
    • 2011
  • Label-free detection of biomolecular interactions was performed using BioFET(Biologically sensitive Field-Effect Transistor) and SPR(Surface Plasmon Resonance). Qualitative information on the immobilization of an anti-IgG and antibody-antigen interaction was gained using the SPR analysis system. The BioFET was used to explore the pI value of the protein and to monitor biomolecular interactions which caused an effective charge change at the gate surface resulting in a drain current change. The results show that the BioFET can be a useful monitoring tool for biomolecular interactions and is complimentary to the SPR system.

Characteristics of Bio-oil by Pyrolysis with Pig Feces (돈분을 이용한 열분해공정 바이오오일의 특성)

  • Kun, Zhu;Choi, Hong L.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The characteristics of the bio-oil produced by the pyrolysis process with pig feces was investigated in this paper. The continuous auger-type reactor produced bio-oil was maintained at the temperature range of 400 to $600^{\circ}C$, which was higher than a typical that in a conventional pyrolysis system. The pig feces was used as the feedstock. The bio-oil and its compositions were characterized by water analysis, heating values, elemental analysis, bio-oil compounds, by Gas Chromatography/Mass Spectrometry (GC/MS), and functional group by $^1H$ NMR spectroscopy. It was found that the maximum bio-oil yields of 21% w.t. was achieved at $550^{\circ}C$. This result suggested that this auger reactor might be a potential technology for livestock waste treatment to produce bio-oil because it is able to be improved to reach higher efficiency of bio-oil production in further study. The pyrolysis system reported herein had low heat transfer into the feedstock in the auger reactor so that it needs improve the heat conduction rate of the system in further study.

  • PDF

Performance Analysis of a Vacuum Pyrolysis System

  • Ju, Young Min;Oh, Kwang Cheol;Lee, Kang Yol;Kim, Dae Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the performance of a vacuum pyrolysis system, to analyze bio-oil characteristics, and to examine the applicability for farm-scale capacity. Methods: The biomass was pyrolyzed at 450, 480, and $490^{\circ}C$ on an electric heat plate in a vacuum reactor. The waste heat from the heat exchanger of the reactor was recycled to evaporate water from the bio-oil. The chemical composition of the bio-oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results: According to the analysis, the moisture content (MC) in the bio-oil was approximately 9%, the high heating value (HHV) was approximately 26 MJ/kg, and 29 compounds were identified. These 29 compounds consisted of six series of carbohydrates, 17 series of lignins, and six series of resins. Conclusions: Owing to low water content and the oxygen content, the HHV of the bio-oil produced from the vacuum reactor was higher by about 6 MJ/kg than that of the bio-oil produced from a fluidized bed reactor.

Development of BioEquiv, a Computer Program for the Analysis of Bioequivalence (생물학적동등성시험을 위한 통계처리 프로그램(BioEquiv)의 개발)

  • Yoon, Sang-Hoo;Hwang, Nan-A;Lim, Young-Chai;Lee, Yong-Bok;Park, Jeong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • K-$BEtest^{(R)}$ is a well known program for bioequivalence test using a $2{\times}2$ design. Lee et al.(1998) and Park et al.(1999) suggested a $3{\times}3$ and $3{\times}2$ design, and also discussed their benefits. We developed a computer program, called BioEquiv, which can analyze some complex experimental designs such as, $3{\times}3$ design and $3{\times}2$ design including a standard $2{\times}2$ design. This program is a user-friendly one and overcomes the disadvantages of K-$BEtest^{(R)}$. The detailed statistical formula and structure of BioEquiv are presented with some examples. The comparison between K-$BEtest^{(R)}$ and BioEquiv are given with actual data analysis. BioEquiv is able to present a table of ANOVA test over some complex experimental designs. Moreover K-$BEtest^{(R)}$ and BioEquiv draw the same result when data consists of $2{\times}2$ design.