• 제목/요약/키워드: Bio-adsorption

검색결과 153건 처리시간 0.044초

토주실험에서 동물용 의약품의 이동 특성 (Mobility Characteristics of Veterinary Antibiotics in Soil Column)

  • 황선영;한만희;조재영
    • Journal of Applied Biological Chemistry
    • /
    • 제55권4호
    • /
    • pp.241-246
    • /
    • 2012
  • 본 연구에서는 토양에 대한 동물용 의약품의 흡 탈착 특성과 토주 실험을 이용한 동물용 의약품의 이동 특성을 조사하였다. 토양 중에서 동물용 의약품 흡 탈착은 Freundlich 흡 탈착등온식에 부합하였다. 흡착상수($K_F$) 값은 oxytetracycline > amoxicillin > sulfathiazole 순으로 나타났다. 100일 동안의 토주실험을 진행한 결과, tetracycline 계열의 oxytetracycline은 토양 내 흡착력이 강해 지하로의 이동이 거의 이루어지지 않는 반면, sulfonamide 계열의 sulfamethoxazole은 토양 흡착은 거의 이루어지지 않고 대부분 중력수를 통한 지하로의 이동량이 매우 높게 나타났다. 이는 oxytetracycline은 토양 중 존재하는 2가 양이온 $Ca^{2+}$ 등과 강하게 흡착되어 토양내 잔류량이 높게 나타날 것이며, amoxicillin과 sulfathiazole은 환경중 유거수나 지하수로 용탈가능성이 높음을 보여주는 지표이다.

폐 생물자원을 이용한 $Cu^{2+},\;Ni^{2+},\;Pb^{2+}$의 제거에 관한 연구 (A Study on the Removal of $Cu^{2+},\;Ni^{2+},\;Pb^{2+}$ by Using Waste Bio Resources)

  • 김희열;송주영;김종화
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2005년도 추계정기총회 및 제26회 학술발표대회 고분자리싸이클링기술 특별심포지엄
    • /
    • pp.271-275
    • /
    • 2005
  • 수용액으로부터 중금속의 제거에 소나무수피, 배추, 게 껍질을 이용하였다. 흡착과 이온교환에 의한 중금속의 제거를 조사하기 위해서 시간, 초기농도변화, 흡착제량 변화에 따른 흡착 효율을 조사하고 각각의 실험마다 pH 변화를 측정하였다. 그 결과 배추가 가장 우수한 흡착력을 보였고, 그 다음으로 게 껍질이 우수한 흡착력을 보였다. 특이할 만 한 사항은 배추와 소나무수피의 흡착 실험시 pH는 감소하나 게 껍질의 경우에는 pH가 오히려 증가하는 경향을 보였다.

  • PDF

Acid Blue 92 (Leather Dye) Removal from Wastewater by Adsorption using Biomass Ash and Activated Carbon

  • Purai, Abhiti;Rattan, V.K.
    • Carbon letters
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2010
  • The adsorption of Acid Blue 92 onto three low cost and ecofriendly biosorbents viz., cow dung ash, mango stone ash and parthenium leaves ash and commercial activated carbon have discussed in this work. The ash of all the mentioned bio-wastes was prepared in the muffle furnace at $500^{\circ}C$ and all the adsorbents were stored in an air thermostat. Experiments at total dye concentrations of 10~100 mg/L were carried out with a synthetic effluent prepared in the laboratory. The parameters such as pH and dye concentration were varied. Equilibrium adsorption data followed both Langmuir and Freundlich isotherms. The results indicate that cow dung ash, mango stone ash and parthenium leaves ash could be employed as low-cost alternatives to commercial activated carbon in wastewater treatment for the removal of dye.

Adsorptive Immobilization of Acetylcholine Esterase on Octadecyl Substituted Porous Silica: Optical Bio-analysis of Carbaryl

  • Norouzy, Amir;Habibi-Rezaei, Mehran;Qujeq, Durdi;Vatani, Maryam;Badiei, Alireza
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.157-161
    • /
    • 2010
  • A sensory element against carbaryl, as a widely used pesticide was prepared based on adsorbed acetylcholine esterase (AChE) from Torpedo california. Octadecyl was substituted on macro-porous silica, confirmed by infra-red (IR) spectroscopy and quantitatively estimated through thermo-gravimetric analysis (TGA). Immobilization of the enzyme was achieved by adsorption on this support. Activity of the immobilization product was measured as a function of the loaded enzyme concentration, and maximum binding capacity of the support was estimated to be 43.18 nmol.mg-1. The immobilized preparations were stable for more than two months at storage conditions and showed consistency in continuous operations. Possible application of the immobilized AChE for quantitative analysis of carbaryl is proposed in this study.

나노기공 표면에서의 세포 행동양식에 관한 연구 (Investigation of Cell Behavior on Nanoporous Surface)

  • 정성희;윤원중;민준홍
    • KSBB Journal
    • /
    • 제27권1호
    • /
    • pp.45-50
    • /
    • 2012
  • In this paper, we investigated the effect of nanostructure on the cell behaviors such as adhesion and growth rate. Nanoporous structures with various diameters (30, 40, 45, 50, 60 nm) and 500 nm of the depth were fabricated using the anodizing method. The water contact angle of the surface consisting of nanopores with 30 nm diameter was 40 degree and those were 60~70 degree in cases of nanopores with over 40 nm diameter. Hela cells were cultivated on various nanoporous structure surface to investigate the cell behavior on nanostructure. As a result, Hela cells preferred 30 nm diameter nanoporous surface that has lower water contact angle. This result was confirmed by protein adsorption experiment and scanning electron microscope investigation.

Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst

  • Jung, Tae-Sung;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.449-453
    • /
    • 2009
  • A mesoporous assembly of layered titanate with well-dispersed Pt cocatalysts has been synthesized via a restacking of exfoliated titanate nanosheets and a simultaneous adsorption of Pt nanoparticles. According to powder X-ray diffraction analysis, the obtained mesoporous assembly shows amorphous structure corresponding to the disordered stacking of layered titanate crystallites. Field emission-scanning electron microscopy and $N_2$ adsorption-desorption isotherm measurement clearly demonstrate the formation of mesoporous structure with expanded surface area due to the house-of-cards type stacking of the titanate crystallites. From high resolution-transmission electron microscopy and elemental mapping analyses, it is found that Pt nanoparticles with the size of ~2.5 nm are homogeneously dispersed in the mesoporous assembly of layered titanate. In comparison with the protonated titanate, the present mesoporous assembly of layered titanate exhibits better photocatalytic activity for the photodegradation of organic molecules. This finding underscores that the restacking of exfoliated nanosheets is quite useful not only in creating mesoporous structure but also in improving the photocatalytic activity of titanium oxide.

Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost, and Phosphate Amendment

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.326-331
    • /
    • 2015
  • High salinity and sodicity of soils play a negative role in producing crops in reclaimed tidal lands. To evaluate the effects of soil ameliorants on salt removal in a highly saline and sodic soil of reclaimed tidal land, we conducted a column experiment with treating gypsum, compost, and phosphate at 0-2 cm depth and measured the salt concentration of leachate and soil. Electrical conductivity of leachate was $45-48dSm^{-1}$ at 1 pore volume (PV) of water and decreased to less than $3dSm^{-1}$ at 3 PV of water. Gypsum significantly decreased SAR (sodium adsorption ratio) of leachate below 3 at 3 PV of water and soil ESP (exchangeable sodium percentage) below 3% for the whole profile of soil column. Compost significantly decreased ESP of soil at 0-5 cm depth to 5% compared with the control (20%). However, compost affected little the composition of cations below a depth of 5 cm and in leachate compared with control treatment. It was concluded that gypsum was effective in ameliorating reclaimed tidal lands at and below a soil layer receiving gypsum while compost worked only at a soil layer where compost was treated.

갈대 biochar의 구리 및 카드뮴 경쟁흡착특성 (Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis)

  • 박종환;김성헌;신지현;김홍출;서동철
    • 한국환경농학회지
    • /
    • 제34권1호
    • /
    • pp.21-29
    • /
    • 2015
  • BACKGROUND: Heavy metal adsorptionnot only depends on biochar characteristics but also on the nature of the metals involved and on their competitive behavior for biochar adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu and Cd in mono-metal and binary-metal forms by biochar derived from Phragmites communis. METHODS AND RESULTS: Batch and column experiments were conducted to evaluate the competitive adsorption characteristics of the biocharfor Cu and Cd. In the batch experiments, the maximum adsorption capacity of Cd(63 mg/g) by biochar was higher than that for Cu (55 mg/g) in the mono-metal adsorption isotherm. On the other hand, the maximum Cu adsorption capacity (40 mg/g) by biochar was higher than that for Cd(25 mg/g) in the binary-metal adsorption isotherm. Cu was the most retained cations. Cd could be easily exchanged and substituted by Cu. The amounts of adsorbed metals in the column experiments were in the order of Cd (121 mg/g) > Cu (96 mg/g) in mono-metal conditions, and Cu (72 mg/g) > Cd (29 mg/g) in binary-metal conditions. CONCLUSION: Overall, the results demonstrated that competitive adsorption among metals increased the mobility of these metals. Particularly, Cd in binary-metal conditions lost its adsorption capacity most significantly.

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향 (Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar)

  • 김희선;윤석인;안난희;신중두
    • 한국환경농학회지
    • /
    • 제39권3호
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.