• 제목/요약/키워드: Bio-adsorption

검색결과 153건 처리시간 0.025초

음이온교환수지와 활성탄을 이용한 산업 폐수 중 셀레늄의 흡착 (Adsorption of Selenium in Industrial Wastewater Using Anion Exchange Resin and Activated Carbon)

  • 한상욱;박진도;이학성
    • 한국환경과학회지
    • /
    • 제18권12호
    • /
    • pp.1411-1416
    • /
    • 2009
  • Several adsorbents were tried to remove the selenium ions from industrial wastewater and the following ascending order of the adsorption performance for the selenium at pH 9 was observed: cation exchange resin < chelate resin < zeolite < brown marine algae < granular activated carbon < anion exchange resin. Initial concentration of selenium(146 mg/L) in industrial wastewater was reduced to 63 mg/L of selenium at pH 9 by neutralization process. The maximum uptake of Se calculated from the Langmuir isotherm with anion exchange resin was 0.091 mmol/g at pH 10 and that with granular activated carbon was 0.083 mmol/g at pH 6. The affinity coefficients of Se ion towards anion exchange resin and granular activated carbon were 3.263 L/mmol at pH 10 and 0.873 L/mmol at pH 6, respectively. The sorption performance of anion exchange resin at the low concentration of Se, namely, was much better than that of granular activated carbon. The Se ions from industrial wastewater throughout neutralization process and two steps of adsorption using anion exchange resin was removed to 97.7%.

점토광물을 이용한 매립지 가스중 실록산 흡착에 관한 연구 (Adsorption of the Siloxane Contained in Landfill Gas using Clay Mineral)

  • 김종국;최호석;유인상
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.465-470
    • /
    • 2006
  • 실록산은 많은 소비 및 공업제품에 사용되고 있고 이들이 매립되어 발생되는 매립가스에는 휘발성 실록산을 포함한다. 휘발성 실록산을 포함한 매립가스를 가스엔진의 연료로 사용할 경우 매립가스내 휘발성 실록산은 가스엔진뿐만 아니라 전처리 시설에 큰 해를 입히게 된다. 따라서 본 연구에서는 매립가스내 휘발성 실록산 흡착제로서 활성탄 대용으로 천연 점토광물인 질석과 일라이트를 사용해 이의 유용성을 검토하였다. 질석, 일라이트 및 활성탄의 SEM 및 BET 분석을 통해 이들의 물성값을 비교하였다. 또한 일라이트 및 질석을 흡착제로 사용하여 D5 실록산의 흡착용량을 평가 하였는바, 각각 1.7 g/g 일라이트 및 3.8 g/g 질석의 대단히 높은 흡착용량을 나타내었다.

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

바이오가스 마이크로 터빈 발전용 전처리시스템 전산유동해석 (Computational Fluid Dynamics Analysis of the Pretreatment System for Livestock BIO-GAS MGT Power Generation)

  • 허광범;박정극;임상규;김재훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.260-263
    • /
    • 2008
  • KEPCO(Korea Electric Power Corporation) is performing the nation's first biogas-MGT project as an effort to encourage the utilization of wasted biogas which contains useful CH4. The goals of this project are to develop the Pretreatment system of Livestock bio-gas and set up the biogas-MGT co-generation system. The project will not only utilze flared biogas as precious energy but also improve the economics of the plant a lot. The pretreatment system mainly consists of sulfur removal tower, biogas compressor and many filtering systems. A computational fluid dynamics study in the bio gas sulfur removal tower and sulfur absorption filter was carried out. Understanding of the flow in the sulfur removal tower and sulfur adsorption filter obtained by this study can be used to identify the problems in the sulfur removal tower and to improve the sulfur removal efficiency of the sulfur removal tower. Resistance material modeling is used to simulate the sulfur adsorption filter, and the resistance coefficient was adjusted to reflect the experimental pressure loss value. And the pressure loss change with the flowrate is predicted

  • PDF

철 전이금속이 담지된 분말활성탄을 이용한 후렉소잉크 폐수의 처리 (The Treatment of Flexo-inks Wastewater using Powdered Activated Carbon Including Iron-transition Metal)

  • 조용덕;윤원중;강익중;유인상;이상화
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.996-1003
    • /
    • 2006
  • The absorption characteristics of powdered activated carbon doped by transition-metal nanoparticles were investigated to enhance the remove efficiencies of $TCOD_{Mn}$ and Color from the flexo-inks wastewater. According to the adsorption dynamics of PAC and MPAC, the optimal dosage of activated-carbon adsorbents was 3 g/L under the reaction conditions of pH6.0, 30 mill of reaction time, 240 rpm of mixing intensity. The removal efficiencies by the optimal dosages were maximized as 19% $TCOD_{Mn}$, 57% Color for PAC and 88% $TCOD_{Mn}$, 95% Color for MPAC. Freundlich indexes of isotherm absorption were estimated as follows: i) For PAC, k=-8.11, 1/n=2.98, r=0.91 in the raw water, and k=0.14, b/n=0.75, r=0.96 in the biological treatment water, ii) For MPAC, k=2.69, 1/n=0.21, r=0.80 in the raw water, and k=0.74, 1/n=1.17, r=0.95 in the biological treatment water. MPAC (Powdered activated carbon doped by transition-metal nanoaprticles) was very effective in the removal of organics from the raw water and biological treatment water, as Freundlich indexes of 1/n for both types of water were estimated less than 2.0.

The Fate and Factors Determining Arsenic Mobility of Arsenic in Soil-A Review

  • Lee, Kyo Suk;Shim, Ho Young;Lee, Dong Sung;Chung, Doug Young
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.73-80
    • /
    • 2015
  • Arsenic which is found in several different chemical forms and oxidation states and causes acute and chronic adverse health effects is a toxic trace element widely distributed in soils and aquifers from both geologic and anthropogenic sources. Arsenic which has a mysterious ability to change color, behavior, reactivity, and toxicity has diverse chemical behavior in the natural environment. Arsenic which has stronger ability to readily change oxidation state than nitrogen and phosphorus due to a consequence of the electronic configuration of its valence orbitals with partially filled states capable of both electron donation and acceptance although the electronegativity of arsenic is greater than that of nitrogen and similar to that of phosphorus. Arsenate (V) is the thermodynamically stable form of As under aerobic condition and interacts strongly with solid matrix. However, it has been known that adsorption and oxidation reactions of arsenite (III) which is more soluble and mobile than As(V) in soils are two important factors affecting the fate and transport of arsenic in the environment. That is, the movement of As in soils and aquifers is highly dependent on the adsorption-desorption reactions in the solid phase. This article, however, focuses primarily on understanding the fate and speciation of As in soils and what fate arsenic will have after it is incorporated into soils.

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

미생물 활성토탄을 이용한 암모니아 제거에 관한 연구 (A Study on the Removal of Ammonia by Using Peat Biofilter)

  • 정연규;안준성
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.655-668
    • /
    • 1994
  • 기존의 토양상 및 퇴비상을 이용한 악취제거가 주로 흡착에 의존한 나머지 탈취상이 쉽게 탈취능의 한계에 이른다. 따라서, 본 연구에서는 미생물 활성 탈취상의 조건인 높은 유기물함량, 보수성, 통기성 및 낮은 정압 등을 고르게 갖추고 있는 토탄에 활성슬러지를 식종하여 분뇨처리장, 하수처리장 등에서 발생빈도 및 취기강도가 큰 무기성악취 중 암모니아의 제거실험을 수행하였다. 실험결과, 자연 토탄상에서는 암모니아의 토탄수분에 의한 이온화에 따라서 pH가 상승하여 암모니아의 자연 유출 현상이 관찰되었다. 암모니아 제거 기작은 주로 음이론 콜로이드에 의한 흡착에 의존하였다. 미생물 활성 토탄상에서는 미생물 활동에 따른 pH의 완만한 상승으로 이론적 암모늄 이온의 비율이 자연토탄상보다 높았으나, 실제로 토탄상에 축적된 암모니아성 질소의 값은 질산균의 질산화에 의해 자연 토탄상보다 적었다. 암모니아의 제거기작은 반응조 운영 초기에는 흡착이 우세하였으며, 중반이후에는 질산화가 두드러졌다. 실험으로 얻은 암모니아 유입부하량, 암모니아 유출부하량, $NH_4{^+}$-N, $NO_x$-N, Org-N을 이용하여 질소에 대한 물질수지(Mass Balance)를 산정하고, 실험결과로 얻은 미생물 활성 탈취상의 최대 활성 시점인 비정상상태의 임계시간과 회귀분석에 의해 구한 암모니아의 흡착곡선을 이용하여 미생물 활성 토탄상에서 흡착능 포화의 연장시간을 산정하였다.

  • PDF