• Title/Summary/Keyword: Bio-TEM

Search Result 55, Processing Time 0.02 seconds

Characterization of Viable But Nonculturable Condition of Escherichia coli Induced with Copper (구리에 의해 유도된 VBNC 대장균의 특성)

  • Ku, Hyung-Keun;Park, Sang-Ryoul;Kim, Sook-Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.209-214
    • /
    • 2008
  • VBNC (Viable but nonculturable) state is an adaptive response of cells in adverse environments, which lead cell not grow on routine nutrient agar. In this study, we induced VBNC in Escherichia coli using copper and verify the characterization of it. After treatment of copper, we didn't detect any cells via plate cultivation, namely, colony forming unit (CFU) was zero. However, we identified the existence of VBNC by staining live cells with Live/Dead BacLight bacterial viability kit and counting them through flow cytometry. Then we isolated genomic DNA and RNA from VBNC-induced cells and analyzed the stability of them. Degradation of RNA is more severe than that of DNA and RNA is degraded as specific fragments. In addition, we showed the morphology of VBNC cell by Bio-Transmission Electron Microscope (Bio-TEM). VBNC cell showed impaired periplasmic space and inner and outer membrane were separated and the amount of cytosol were significantly decreased.

Bio-functionalized Gold Nanoparticles for Surface-Plasmon- Absorption-Based Protein Detection

  • Kim, Wan-Joong;Choi, Soo-Hee;Rho, Young-S.;Yoo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4171-4175
    • /
    • 2011
  • Bio-functionalized gold nanoparticles (AuNPs), which bio-specifically interact with biotin-(strept)avidin, were investigated in this study. AuNPs were functionalized with a synthetically-provided biotin-linked thiol (BLT), which was synthesized by amidation of the active ester of biotin with 2-mercaptoethylamine. The BLT-attached AuNP was bio-specific for streptavidin, making it potentially useful for biosensor applications. To test the bio-specific interactions, the colors, absorption spectra and TEM images were investigated for proteins such as streptavidin, cytochrome C, myoglobin and hemoglobin. The colors and absorption spectra changed when streptavidin was added to the BLT-attached AuNP solution. However, the color and spectra did not change when the other proteins were added to the same solution. These results show that the AuNPs provided a colloidal solution with excellent stability and highly selective absorption characteristics for streptavidin as a target molecule. Proteins were also screened in order to identify a general strategy for the use of optical biosensing proteins based on AuNPs. In addition, TEM images confirmed that streptavidin led the BLT-attached AuNPs to aggregate or precipitate.

Transmission Electron Microscope Sampling Method for Three-Dimensional Structure Analysis of Two-Dimensional Soft Materials

  • Lee, Sang-Gil;Lee, Ji-Hyun;Yoo, Seung Jo;Datta, Suvo Jit;Hwang, In-Chul;Yoon, Kyung-Byung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.203-207
    • /
    • 2015
  • Sample preparation is very important for crystal structure analysis of novel nanostructured materials in electron microscopy. Generally, a grid dispersion method has been used as transmission electron microscope (TEM) sampling method of nano-powder samples. However, it is difficult to obtain the cross-sectional information for the tabular-structured materials. In order to solve this problem, we have attempted a new sample preparation method using focused ion beam. Base on this approach, it was possible to successfully obtain the electron diffraction patterns and high-resolution TEM images of the cross-section of tabular structure. Finally, we were able to obtain three-dimensional crystallographic information of novel zeolite nano-crystal of the tabular morphology by applying the new sample preparation technique.

Syntheses and Characterizations of Valine and Alanine Capped Water Soluble ZnS Nanoparticles (Valine 및 Alanine 분자로 표면 처리된 수용성의 ZnS 나노입자의 합성 및 특성연구)

  • Lee, Sang-Min;Kim, Ki-moon;Hwang, Cheong-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.505-511
    • /
    • 2009
  • Water soluble ZnS nanocrystals were synthesized by capping the surface of the nanocrystals with valine and alanine molecules, which are structurally simple and bio friendly amino acids. The obtained ZnS nanocrystal powders were characterized by XRD, HR-TEM, and EDXS spectroscopies. The measured particle sizes by HR-TEM images were in the range of 3.3 to 3.6 nm. In addition, the surface capping amino acids molecules were characterized by FT-IR and FT-Raman spectroscopies.

Remediation of Heavy Metal Contaminated Groundwater by Using the Biocarrier with Dead Bacillus sp. B1 and Polysulfone (Bacillus sp. B1 사균과 Polysulfone으로 이루어진 미생물 담체를 이용한 중금속 오염 지하수 정화)

  • Lee, Min-Hee;Lee, Ji-Young;Wang, Soo-Kyun
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.555-564
    • /
    • 2010
  • Remediation process by using the bio-carrier (beads) with dead Bacillus sp. B1 and polysulfone was investigated for heavy metal contaminated groundwater. Sorption batch experiments using the bio-carrier were performed to quantify the heavy metal removal efficiencies from the contaminated solution. The analyses using SEM/EDS and TEM for the structure and the characteristic of precipitates on/inside the beads were also conducted to understand the sorption mechanism by the bio-carrier. Various amounts of freeze-dried dead Bacillus sp. B1 were mixed with polysulfone + DMF(N,N-dimethylformamide) solution to produce the bio-carrier (beads; less than 2mm in diameter) and 5% of Bacillus sp. B1 in the bio-carrier was optimal for Pb removal in the solution. The removal efficiency ratings of the bio-carrier for Pb, Cu and Cd were greater than 80% after adding 2g of bio-carrier in 50ml of aqueous solution (<10mg/L of each heavy metal concentration). Reaction time of the bio-carrier was very fast and most of the sorption reaction for heavy metals were completed within few hours. Batch experiments were duplicated at various pH conditions of aqueous solutions and Cu and Pb removal efficiencies highly maintained at wide pH ranges (pH 2-12), suggesting that the bio-carrier can be useful to clean up the acidic waste water such as AMD. From SEM/EDS and TEM analyses, it was observed that the bio-carrier was spherical shape and was overlapped by many porous layers. During the sorption experiment, Pb was crystallized on the surface of porous layers and also was mainly concentrated at the boundary of Bacillus sp. B1 stroma and polysulfone substrate, showing that the main mechanism of the bio-carrier to remove heavy metals is the sorption on/inside of the bio-carriers and the bio-carriers are excellent biosorbents for the removal of heavy metal ions from groundwater.

A study on machining method about molybdenum alloy micro fixing part for TEM precision specimen. (TEM 정밀 시편 제작용 몰리브덴 합금 미세 고정 부품의 제작을 위한 절삭 가공 방법에 관한 연구)

  • Kim, Ki-Beom;Lee, Chang-Woo;Lee, Hae-Jin;Ham, Min-Ji;Kim, Gun-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • In these days, increase requirement of TEM (Transmission Electro Microscope) in not only scientific field but also industrial field. Because TEM can measure inner-structure of specimen a variety of materials like metal, bio. etc. When use TEM, specimen should be thin about 50nm. So making for thin specimen, use Ion milling device that include specimen holder. The holder generally made of Aluminium Aluminium holder is worn away easily. For this reason, using time of ion milling with aluminum holder is too short. To solve the problem, we replace aluminium holer to molybdenum alloy holder. In this paper, we design molybdenum alloy holer for CAM and modify CAD modeling for effective machining process. So we array a specimen 3 by 4 and setup orientation for one-shot machining process. Next we make a CAM program for machining. we making a decision two machining strategy that chose condition of tool-path method, step-down, step-over. etc. And then conduct machining using CNC milling machining center. To make clear difference between case.1 and case.2, we fixed machining conditions like feed-rate, main spindle rpm, etc. After machining, we confirm the condition of workpiece and analysis the problems case by case. Finally, case.2 work piece that superior than case.1 cutting with WEDM because that method can not ant mechanical effect on workpiece.

Sample Preparation of Ductile Heterogeneity Materials by Ultramicrotomy (연성 이종 재료 시료의 상온 절편 제작법)

  • Chae, Hee-Su;Kweon, Hee-Seok;Je, A-Reum;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.42 no.1
    • /
    • pp.49-52
    • /
    • 2012
  • For TEM study of biological samples or polymers that are contained in organic structure, it is often required that the sample is prepared by using ultramicrotome and stained with proper agents to increase the contrast of organic structure. In this study, we investigated an efficient TEM sample preparation method for ductile heterogeneity material by using ultramicrotomy. Cryo-ultramicrotomy is a suitable method that is capable of rendering sample hardness for various ductile materials. However, it has several factors to consider, such as experimental cost, working time and finding the optimal staining conditions. To satisfy these considerations, we prepared TEM sample by using ultramicrotome without cryofunction, and secured the sample hardness by applying the staining process prior to ultrathin sectioning. The cross-linked polyethylene structure in the sample was stained with the 2% $RuO_4$ solution in a sealed test tube for 24 hours at $4^{\circ}C$. After the sample staining, ultrathin sections of sample were prepared using ultramicrotome. As a result, it was revealed that the difficulties associated with staining of ultrathin sections prepared by low-temperature conditions were improved. In addition, appropriate staining depth of sample could be selected for sectioning process. The quality of TEM sample obtained by using this method was better than that of cryo-ultramicroscopy. Finally, it is expected that our method could be effectively applied in TEM sample preparation for a variety of nano-bio convergence materials.

Biosynthesis of Zinc Oxide Nanoparticles and Structural Characterization and Antibacterial Performance (바이오 합성법으로 제조된 ZnO 나노입자의 구조 분석 및 항박테리아 거동)

  • Suresh, Joghee;Song, Jae Sook;Hong, Sun Ig
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.252-261
    • /
    • 2020
  • We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.

Synthesis of anisotropic defective polyaniline/silver nanocomposites

  • Kamblea, Vaishali;Kodwania, Gunjan;Sridharkrishna, Ramdoss;Ankamwar, Balaprasad
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • The chemical synthesis of anisotropic defective polyaniline/Ag composite (PANI/Ag) is explored using silver nitrate ($AgNO_3$) as the precursor material. This study provides a simple method for the formation of PANI/Ag nanocomposites at two different aniline concentrations $5{\mu}l$ (PANC5) and $10{\mu}l$ (PANC10). The composite PANC5 exhibits UV-Visible absorption peaks at 436 nm and 670 nm whereas, PANC10 exhibits absorption peaks at 446 nm and 697 nm. This shift is caused by the strong interaction between polyaniline and silver. The characterized FTIR peaks observed at around $3410cm^{-1}$ (PANC5) and $3420cm^{-1}$ (PANC10) was due to the N-H stretching vibrations. The appearance of a broad band instead of a sharp peak can be attributed due to the presence of a high concentration of N-H groups in the nanocomposite. The TEM images show that the sample contains defective spherical, truncated triangular and rod shaped particles. The results showed that the PANI/Ag nanocomposites are composed of nano-sized particles of 43-53 nm that contain Ag domains of 33-37 nm with polymer thickness 5.7-11.2 nm at two different aniline concentrations.

Preparation of Micro-/Macroporous Carbons and Their Gas Sorption Properties

  • Hwang, Yong-Kyung;Shin, Hye-Seon;Hong, Jin-Yeon;Huh, Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.377-382
    • /
    • 2014
  • Micro-/macroporous carbons (MMCs) were prepared using a hollow mesoporous silica capsule (HMSC) as a sacrificial hard template. The carbonization process after the infiltration of furfuryl alcohol into the template-free HMSC material afforded MMC materials in high yield. The hard template HMSC could be removed by HF etching without deteriorating the structure of MMC. The MMC materials were fully characterized by SEM, TEM, PXRD, XPS, and Raman spectroscopy. The replication processes were so successful that MMCs exhibited a hollow capsular structure with multimodal microporosity. Detailed textural properties of MMC materials were investigated by volumetric $N_2$ adsorption-desorption analysis at 77 K. To explore the gas sorption abilities of MMCs for other gases, $H_2$ and $CO_2$ sorption analyses were also performed at various temperatures. The multimodal MMC materials were found to be good sorbents for both $H_2$ and $CO_2$ at low pressure.