• Title/Summary/Keyword: Bio-Signal Interface

Search Result 39, Processing Time 0.031 seconds

A Study on the Electrical Circuit Model of the Electrode/Electrolyte Interface for Improving Electrochemical Impedance Fitting (전기화학적 임피던스 Fitting 개선을 위한 전극/전해질 계면의 전기회로 모델 연구)

  • Chang, Jong-Hyeon;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1087-1091
    • /
    • 2007
  • Exact impedance modeling of the electrode/electrolyte interface is important in bio-signal sensing electrode development. Therefore, the investigation of the equivalent circuit models for the interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. The proposed model consists of three resistors and two constant phase elements. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.

A Biosignal-Based Human Interface Controlling a Power-Wheelchair for People with Motor Disabilities

  • Kim, Ki-Hong;Kim, Hong-Kee;Kim, Jong-Sung;Son, Wook-Ho;Lee, Soo-Young
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.111-114
    • /
    • 2006
  • An alternative human interface enabling people with severe motor disabilities to control an assistive system is presented. Since this interface relies on the biosignals originating from the contraction of muscles on the face during particular movements, even individuals with a paralyzed limb can use it with ease. For real-world application, a dedicated hardware module employing a general-purpose digital signal processor was implemented and its validity tested on an electrically powered wheelchair. Furthermore, an additional attempt to reduce error rates to a minimum for stable operation was also made based on the entropy information inherent in the signals during the classification phase. In the experiments, most of the five participating subjects could control the target system at their own will, and thus it is found that the proposed interface can be considered a potential alternative for the interaction of the severely disabled with electronic systems.

  • PDF

Integrated Bio-signal Management System Through Network (네트워크를 통한 의료정보관리시스템에 관한 연구)

  • Suk, J.H.;Yoon, Y.R.;Yoon, H.R.;Kang, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.263-266
    • /
    • 1997
  • The purpose of this paper is the development of Integrated Bio-signal Management System. (IBMS) using the network. IBMS is the system to manage the medical signals that measured from the each independent medical measurement system module. Each has a LAN Card. We developed the Network Application using Socket Library. Also, we developed the Graphic User Interface software for IBMS using Visual C++ on Windows 95.

  • PDF

Integrated Bio-signal Management System Through Network (네트워크를 통한 의료정보관리시스템에 관한 연구)

  • Lee, W.H.;Suk, J.H.;Yoon, Y.R.;Yoon, H.R.;Kang, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.151-153
    • /
    • 1996
  • The purpose of this paper is the development of Integrated Bio-signal Management System(IBMS) using the network. IBMS is the system to manage the medical signals that measured from the each independent medical measurement system module. Each has a LAN. We developed the file-server network using Novell Netware. Also, we developed the Graphic User Interface software for IBMS using Visual C++ at Windows 3.1.

  • PDF

Extraction or gaze point on display based on EOG for general paralysis patient (전신마비 환자를 위한 EOG 기반 디스플레이 상의 응시 좌표 산출)

  • Lee, D.H.;Yu, J.H.;Kim, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 2011
  • This paper proposes a method for extraction of the gaze point on display using EOG(Electrooculography) signal. Based on the linear property of EOG signal, the proposed method corrects scaling difference, rotation difference and origin difference between coordinate of using EOG signal and coordinate on display, without adjustment using the head movement. The performance of the proposed method was evaluated by measuring the difference between extracted gaze point and displayed circle point on the monitor with 1680*1050 resolution. Experimental results show that the average distance errors at the gaze points are 3%(56pixel) on x-axis, 4%(47pixel) on y-axis, respectively. This method can be used to human computer interface of pointing device for general paralysis patients or HCI for VR game application.

Intelligent Driver Assistance Systems Using Biosignal (생체신호계측을 이용한 지능형 운전보조 시스템)

  • Lee, Sang-Ryong;Park, Keun-Young;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1186-1191
    • /
    • 2007
  • Human driver monitoring system is one of the most important systems for the safety in driving vehicles, and therefore driver assistance system has gained much attention during the last decade. This paper proposed an intelligent driver assistance system which monitors human driver's states from bio-signals such as ECG and Blood Pressure. The proposed system used mamdani fuzzy inference to evaluate the driver's mental strain and generated warning signals to the driver. The approach using bio-signals in driver assistance system is the main issue of the related systems and the preliminary results showed the possibility of further research topics in developing more intelligent embedded systems with bio-signal feedback.

A Novel EMG-based Human-Computer Interface for Electric-Powered Wheelchair Users with Motor Disabilities (거동장애를 가진 전동휠체어 사용자를 위한 근전도 기반의 휴먼-컴퓨터 인터페이스)

  • Lee Myung-Joon;Chu Jun-Uk;Ryu Je-Cheong;Mun Mu-Seong;Moon Inhyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • Electromyogram (EMG) signal generated by voluntary contraction of muscles is often used in rehabilitation devices because of its distinct output characteristics compared to other bio-signals. This paper proposes a novel EMG-based human-computer interface for electric-powered wheelchair users with motor disabilities by C4 or C5 spine cord injury. User's commands to control the electric-powered wheelchair are represented by shoulder elevation motions, which are recognized by comparing EMG signals acquired from the levator scapulae muscles with a preset double threshold value. The interface commands for controlling the electric-powered wheelchair consist of combinations of left-, right- and both-shoulders elevation motions. To achieve a real-time interface, we implement an EMG processing hardware composed of analog amplifiers, filters, a mean absolute value circuit and a high-speed microprocessor. The experimental results using an implemented real-time hardware and an electric-powered wheelchair showed that the EMG-based human-computer interface is feasible for the users with severe motor disabilities.

A Virtual 3D Interface System for the Remote Control of Robot Agent (로봇 에이전트의 원격 제어를 위한 가상 3D 인터페이스 시스템)

  • 안현식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.85-90
    • /
    • 2001
  • Recently there are lots of concerning on robot agent system working for itself with the trends of the research of bio-mimetic system and intelligent Therefore it is necessary to develop more humanized interface system from communicating with the robot agent. In this paper a virtual 3D interface system is proposed based on Internet for remote controlling and monitoring of robot agent. The proposed system is constructed as manager-agent model and a man can order a job at the 3D virtual interface environment of the manager located remotely Then the robot agent detects a 3D profile data from a range finder automatically and the robot moves the object to the new position in real space. The proposed system supports a advanced interface displaying virtual 3D graphics and real moving images and which makes it possible one to manage the robot agent more conveniently.

  • PDF

Analysis of QRS-wave Using Wavelet Transform of Electrocardiogram (웨이블릿 변환을 이용한 심전도의 QRS파 신호 분석)

  • Choi, Chang-Hyun;Kim, Yong-Joo;Kim, Tae-Hyeong;Ahn, Yong-Hee;Shin, Dong-Ryeol
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.317-325
    • /
    • 2008
  • The electrocardiogram (ECG) measurement system consists of I/O interface to input the ECG signals from two electrodes, FPGA (Field programmable gate arrays) module to process the signal conditioning, and real time module to control the system. The algorithms based on wavelet transform were developed to remove the noise of the ECG signals and to determine the QRS-waves. Triangular wave tests were conducted to determine the optimal factors of the wavelet filter by analyzing the SNRs (signal to noise ratios) and RMSEs (root mean square errors). The hybrid rule, soft method, and symlets of order 5 were selected as thresholding rule, thresholding method, and mother wavelet, respectively. The developed wavelet filter showed good performance to remove the noise of the triangular waves with 10.98 dB of SNR and 0.140 mV of RMSE. The ECG signals from a total of 6 subjects were measured at different measuring postures such as lying, sitting, and standing. The durations of QRS-waves, the amplitudes of R-waves, the intervals of RR-waves were analyzed by using the finite impulse response (FIR) filter and the developed wavelet filter. The wavelet filter showed good performance to determine the features of QRS-waves, but the FIR filter had some problems to detect the peaks of Q and S waves. The measuring postures affected accuracy and precision of the ECG signals. The noises of the ECG signals were increased due to the movement of the subject during measurement. The results showed that the wavelet filter was a useful tool to remove the noise of the ECG signals and to determine the features of the QRS-waves.

Development of Motion Mechanisms for Health-Care Riding Robots (지능형 헬스케어 승마로봇의 모션 메카니즘 개발)

  • Kim, Jin-Soo;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1735-1736
    • /
    • 2008
  • In this research, a riding robot system named as "RideBot" is developed for health-care and entertainments. The developed riding robot can follow the intention of horseman and can simulate the motion of horse. The riding robot mechanisms are used for many functions of attitude detection, motion sensing, recognition, common interface and motion-generations. This riding robot can react on health conditions, bio-signals and intention informations of user. One of the objectives of this research is that the riding robot could catch user motion and operate spontaneous movements. In this paper, we develope the saddle mechanism which can generate 3 degrees-of-freedom riding motion based on the intention of horseman. Also, we develope reins and spur mechanism for the recognition of the horseman's intention estimation and the bio-signal monitoring system for the health care function of a horseman. In order to evaluate the performance of the riding robot system, we tested several riding motions including slow and normal step motion, left and right turn motion.

  • PDF