• Title/Summary/Keyword: Bio level

Search Result 1,622, Processing Time 0.025 seconds

Development of Soil Moisture Controlling System for Smart Irrigation System (스마트 관개 시스템을 위한 토양 수분 제어시스템 개발)

  • Kim, Jongsoon;Choi, Won-Sik;Jung, Ki-Yeol;Lee, Sanghun;Park, Jong Min;Kwon, Soon Gu;Kim, Dong-Hyun;Kwon, Soon Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • The smart irrigation system using ICT technology is crucial for stable production of upland crops. The objective of this study was to develop a smart irrigation system that can control soil water, depending on irrigation methods, in order to improve crop production. In surface irrigation, three irrigation methods (sprinkler irrigation (SI), surface drip irrigation (SDI), and fountain irrigation (FI)) were installed on a crop field. The soil water contents were measured at 10, 20, 30, and 40 cm depth, and an automatic irrigation system controls a valve to maintain the soil water content at 10 cm to be 30%. In subsurface drip irrigation (SSDI), the drip lines were installed at a depth of 20 cm. Controlled drainage system (CDS) was managed with two ground water level (30 cm and 60 cm). The seasonal irrigation amounts were 96.4 ton/10a (SDI), 119.5 ton/10a (FI), and 113 ton/10a (SI), respectively. Since SDI system supplied water near the root zone of plants, the water was saved by 23.9% and 17.3%, compared with FI and SI, respectively. In SSDI, the mean soil water content was 38.8%, which was 10.8% higher than the value at the control treatment. In CDS, the water contents were greatly affected by the ground water level; the water contents at the surface zone with 30 cm ground water level was 9.4% higher than the values with 60 cm ground water level. In conclusion, this smart irrigation system can reduce production costs of upland crops.

Performance Test for the Long Distance Sprayer by an Image Processing (영상처리를 이용한 광역방제기 팬의 성능실험)

  • Min, B.R.;Kim, D.W.;Seo, K.W.;Hong, J.T.;Kim, W.;Choi, J.H.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • This research was carried out to test and analyze capacity of the long distance sprayer fan in large livestock farmhouses. Long distance sprayer was manufactured to be able to spray a lot of water, which was a solvent for agricultural chemicals and black dye with the maximum spraying distance of 140 m and the effective spraying distance of 100 m. The spraying quantity and the distance were measured the intensity values of images within A4 papers, which absorbed the agricultural chemicals by spraying by binary image processing. These A4 papers were fixed upon the height of 1 m from soil ground at regular 10 m interval. After the A4 papers were collected and analyzed the intensity values of gray level. Gray level was ranged from 0 to 255, where 0 was black and 255 was white. A4 paper was fallen down from the stick at 10 m distance, because there were too large amount of sprayed water with black dye. Also, the paper showed low gray level at distance 30 m because of dropping lots of black water. The intensity value of gray level was showed almost less than 200 on the A4 papers between the distance 20 m and 100 m, which meant equality of spraying quantity. Additionally, it was possible to spay agricultural chemicals of until 180 m. Throughout this research, long distance sprayer could apply for preventing hoof-and-mouth disease in large livestock farmhouses.

  • PDF

Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation

  • Selma, Tisa;Madusanka, Nuwan;Kim, Tae-Hyung;Kim, Young-Hoon;Mun, Chi-Woong;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1236-1247
    • /
    • 2016
  • Recently, the level set has become a popular method in many research fields. The main reason is that it can be modified into many variants. One such case is our proposed method. We describe a contrast-enhancement method to segment the hippocampal region from the background. However, the hippocampus region has quite similar intensities to the neighboring pixel intensities. In addition, to handle the inhomogeneous intensities of the hippocampus, we used a bias correction before hippocampal segmentation. Thus, we developed a contrast-enhanced bias-corrected distance-regularized level set (CBDLS) to segment the hippocampus in magnetic resonance imaging (MRI). It shows better performance than the distance-regularized level set evolution (DLS) and bias-corrected distance-regularized level set (BDLS) methods in 33 MRI images of one normal patient. Segmentation after contrast enhancement and bias correction can be done more accurately than segmentation while not using a bias-correction method and without contrast enhancement.

Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand

  • Do, Bich Hang;Nguyen, Minh Tan;Song, Jung-A;Park, Sangsu;Yoo, Jiwon;Jang, Jaepyeong;Lee, Sunju;So, Seoungjun;Yoon, Yejin;Kim, Inki;Lee, Kyungjin;Jang, Yeon Jin;Choe, Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2156-2164
    • /
    • 2017
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli. In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was $0.4EU/{\mu}g$, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an $EC_{50}$ and Hill coefficient of $0.6{{\pm}}0.03nM$ and $2.41{\pm}0.15$, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

High-Level Expression and Secretion of Bacillus pumilus Lipase B26 in Bacillus subtilis Chungkookjang

  • Lee, Mi-Hwa;Song, Jae-Jun;Choi, Yoon-Ho;Hong, Seung-Pyo;Rha, Eu-Gene;Kim, Hyung-Kwoun;Lee, Seung-Goo;Poo, Har-Young;Lee, Sang-Chul;Seu, Young-Bae;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.892-896
    • /
    • 2003
  • High-level expression of the lipase B26 gene from Bacillus pumilus was achieved using Bacillus subtilis Chungkookjang isolated from the Korean traditional fermented bean paste, Chungkookjang. For the secretory production of recombinant lipase B26 in a Bacillus host system, pLipB26 was constructed by ligating the lipase B26 gene into the recently designed Escherichia coli-Bacillus shuttle vector, pLipSM, and that was then transformed into B. subtilis Chungkookjang. Among the various vector, medium, and host combinations, B. subtilis Chungkookjang harboring the pLipB26 exhibited the highest lipase activity in PY medium, and B. subtilis Chungkookjang secreted two times more enzymes than B. subtilis DB 104 under the same condition. When B. subtilis Chungkookjang harboring the pLipB26 was cultured in a 5-1 jar-fermentor containing 21 of a PY medium, the maximum lipase activity (140 U/ml) and production yield (0.68 g/l) were obtained during the late exponential phase from a cell-free culture broth. Although B. subtilis Chungkookjang also secreted extracellular proteases at the late exponential phase, these results suggested the potential of B. subtilis Chungkookjang as a host for the secretory production of foreign proteins.

Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season (수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가)

  • Jung, Hyoung-mo;Lee, Sang-Hyun;Kim, Kyounghwan;Kwak, Yeong-cheol;Choi, Eunhyuk;Yoon, Sungeun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan;Yoon, Gwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.

Evaluation of Bio-starch from Corn Processing to Replace Dried-Whey in Weaned Pigs (이유자돈에서 건조 유청 대체를 위한 옥수수 전분 가공제품 Bio-starch의 급여 평가)

  • Shin, Seung-Oh;Yoo, Jong-Sang;Lee, Je-Hyun;Jang, Hae-Dong;Kim, Hyo-Jin;Huang, Yan;Chen, Ying he;Cho, Jin-Ho;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.499-508
    • /
    • 2008
  • This study was conducted to evaluate the effect of bio-starch from corn processing to replace dried whey in weaned pigs. A total of 120 crossbred [(Landrace×Yorkshire)×Duroc] pigs were weaned at 21 days of age weighing 6.01±0.34 kg in average. Five week feeding trial consisted of phase 1(0~2 wks) and phase 2(3~5 wks). Dietary treatments included 1) CON(basal diet), 2) BS5(whey 5%, partial substitution of bio-starch), 3) BS10(whey 10%, partial substitution of bio-starch) and 4) BS15(whey 15%, partial substitution of bio-starch). There were four dietary treatments with six replicate pens per treatment and five pigs per pen. During the overall period, there were no significant differences in the ADG(average daily gain) and gain/feed ratio among the treatments(P>0.05). However, the ADFI(average daily feed intake) was higher in BS5 and BS15 treatments than in CON treatment(P<0.05). At the 2nd week, dry matter and nitrogen digestibility were increased(quadratic effect, P=0.03 and P=0.01, respectively; cubic effect, P<0.001 and P=0.01, respectively) with the highest at 10% of bio-starch inclusion in the diets. At the last week of the experiment, dry matter, nitrogen and energy digestibility were increased(P<0.05) with the highest at 5% of bio-starch inclusion in the diets. At the 2nd week total protein concentration was increased(linear effect, P=0.04; cubic effect, P=0.01) with the highest at 10% of bio-starch inclusion in the diets. Also, BUN(blood urea nitrogen) was increased(linear effect, P=0.01) as the level of bio-starch inclusion increased in the diets. Fecal consistency score was inclined to lowers CON treatment than other treatments. In conclusion, the result of trial indicates that bio-starch can be included at the level of 5~10% of weaning pig diet replacing part of the dried-whey, and digestibilities were positively affected by bio-starch at growth stage.

Disease and insect damage, growth and yield of sorghum, foxtail millet between rotational upland and continuing upland field

  • Yu, Je Bin;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Kim, Young-Jung;Ye, Min Hee;Lee, Gil Jun;Cho, Soo Been;Lee, Young Kyung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.349-349
    • /
    • 2017
  • This study was performed in order to investigate disease, insect damage, growth and yield characteristics of green maize by organic paddy-upland rotation system. This experiment also was to select optimum variety for organic paddy-upland rotation cultivation. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2016. The varieties used in this study are green maize of total 8 varieties. Green maize was planted at rotational upland field and continuing upland field and tested for comparison. In case of average occurrence of 4 major diseases for green maize, rotational upland field was higher than that of continuing upland field. Heukjinjuchal and Daehakchal were the lowest occurrence by less than 2% among 8 varieties. Average damage of 8 varieties by Ostrinia furnacalis larva, which is the main pest in green maize was higher in rotational upland field than that of continuing upland field. Chalok 4 and Heugjeom 2 were judged to be resistant varieties to 4 major diseases among 8 varieties. The average yield of green maize per 10a in rotational upland field decreased to 85% level of continuing upland field and Chalok 4 showed the highest yield by 789.0 kg/10a among 8 varieties. The most suitable varieties in organic paddy-upland rotation system were judged to be Chalok 4, Heukjinjuchal and Heukjeom 2.

  • PDF