• Title/Summary/Keyword: Bio industry

Search Result 1,624, Processing Time 0.021 seconds

The Effects of Total Mixed Ration Feeding with High Roughage Content on Growth Performance, Carcass Characteristics, and Meat Quality of Hanwoo Steers

  • Ku, Min Jung;Mamuad, Lovelia;Nam, Ki Chang;Cho, Yong Il;Kim, Seon Ho;Choi, Young Sun;Lee, Sang Suk
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.45-58
    • /
    • 2021
  • This study investigated the dietary effect of total mixed ration (TMR) based on high roughage content on the growth performance, carcass characteristics, and meat quality of Hanwoo steers. Twenty-four Hanwoo steers (average body weight, 195.3±4.7 kg; age, 8.5 mon) were randomly allocated to three experimental groups according to forage and concentrate ratio (DM basis): 25:75 (control), 50:50 (T50), and 70:30 (T70). Productivity in the fattening period and final body weight were significantly higher in the control. Average daily gain and feed conversion ratio were the same among treatments. Serum parameters, cholesterol, blood urea nitrogen, and total protein were higher in the control. Carcass weight was comparable in the control and T50 but feeding more roughage was significantly correlated with a higher intramuscular fat. Shear strength and drip loss were higher while n-6/n-3 was lower in T70 compared to the other groups. However, meat color was not significantly different among treatments. In terms of free amino acid contents, glutamic acid and glycine were higher in the control than T50 and T70. Overall, feeding Hanwoo steers with high forage content TMR had the lowest n-6/n-3 ratio of fatty acid content but highest intramuscular fat, shear strength, and drip loss. High forage content TMR is the best feed for Hanwoo steers that gives more benefits for human health and consumption but also provides the best meat grade and quality, which is important in the beef market in Korea.

Immune-Enhancing Effects of Crude Polysaccharides from Korean Ginseng Berries on Spleens of Mice with Cyclophosphamide-Induced Immunosuppression

  • Nam, Ju Hyun;Choi, JeongUn;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, SangGuan;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.256-262
    • /
    • 2022
  • Panax ginseng C. A. Meyer is well known as traditional herbal medicine, and ginseng berries are known to exhibit potential immune-enhancing functions. However, little is known about the in vivo immunomodulatory activity of Korean ginseng berries. In this study, crude Korean ginseng berries polysaccharides (GBP) were isolated and their immunomodulatory activities were investigated using cyclophosphamide (CY)-induced immunosuppressive BALB/c mice. In CY-treated mice, oral administration of GBP (50-500 mg/kg BW) remarkably increased their spleen sizes and spleen indices and activated NK cell activities. GBP also resulted in the proliferation of splenic lymphocytes (coordinating with ConA: plant mitogen which is known to stimulate T-cell or LPS: endotoxin which binds receptor complex in B cells to promote the secretion of pro-inflammatory cytokines) in a dose-dependent manner. In addition, GBP significantly stimulated mRNA expression levels of immune-associated genes including interleukin-1β (IL-1β), IL-2, IL-4, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4), and cyclooxygenase-2 (COX-2) in CY-treated mice. These results indicate that GBP is involved in immune effects against CY-induced immunosuppression. Thus, GBP could be developed as an immunomodulation agent for medicinal or functional food application.

Korean Ginseng Berry Polysaccharide Enhances Immunomodulation Activities of Peritoneal Macrophages in Mice with Cyclophosphamide-Induced Immunosuppression

  • JeongUn Choi;Ju Hyun Nam;Weerawan Rod-in;Chaiwat Monmai;A-yeong Jang;SangGuan You;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.840-847
    • /
    • 2023
  • Korean ginseng (Panax ginseng C. A. Meyer), a member of the Araliaceae family, is known as a traditional medicinal plant to have a wide range of health properties. Polysaccharides constitute a major component of Korean ginseng, and its berries exhibit immune-modulating properties. The purpose of this study was to investigate the immune effects of crude polysaccharide (GBPC) extracted from Korean ginseng berry on peritoneal macrophages in mice with cyclophosphamide (CY)- induced immunosuppression. BALB/c mice were divided into eight groups: normal control, normal control + CY, levamisole + CY, ginseng + CY, and four concentrations of 50, 100, 250, and 500 mg/kg BW/day of GBPC + CY. Mice were orally administered with samples for 10 days. Immunosuppression was established by treating mice with CY (80 mg/kg BW/day) through intraperitoneal injection on days 4 to 6. The immune function of peritoneal macrophages was then evaluated. Oral administration of 500 mg/kg BW/day GBPC resulted in proliferation, NO production, and phagocytosis at 100%, 88%, and 91%, respectively, close to the levels of the normal group (100%) of peritoneal macrophages. In CY-treated mice, GBPC of 50-500 mg/kg BW/day also dose-dependently stimulated the proliferation, NO production, and phagocytosis at 56-100%, 47-88%, and 53-91%, respectively, with expression levels of immune-associated genes, such as iNOS, COX-2, IL-1β, IL-6, and TNF-α, of about 0.32 to 2.87-fold, compared to those in the CY group. GBPC could be a potential immunomodulatory material to control peritoneal macrophages under an immunosuppressive condition.

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen;Seul-Ah Kim;Ya-Yun Cheng;Sung Hoon Hong;Yong-Su Jin;Nam Soo Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1228-1237
    • /
    • 2023
  • The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.

Antioxidant Activities of Phenolic Compounds from Medicinal Plants (Hibiscus esculentus, Cirsium japonicum, Zizania latifolia and Kalopanax pictus) (약용식물(오크라, 엉컹퀴, 엄나무, 줄풀) 유래 페놀성 물질의 항산화 활성)

  • Choi, Jin-Young;Jo, Min-Kyeong;Goo, Young-Mi;Kim, Hyun-Kyung;Shin, Jin-Won;Kim, Dong-Yeong;Kim, Hye-Jin;Lee, Eun-Ho;Kim, Na-Hyun;Cho, Young-Je
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.2
    • /
    • pp.57-63
    • /
    • 2015
  • In this study, the antioxidant activity of water and ethanol extracts from Hibiscus esculentus, Cirsium japonicum, Zizania latifolia and Kalopanax pictus for functional food source were examined. The optimal conditions for phenolic compounds extraction from medicinal plants were at 50% ethanol with Hibiscus esculentus and Cirsium japonicum var. ussuriense, at 40% ethanol with Kalopanax pictus and at 60% ethanol with Zizania latifolia. The total phenolic contents from the extracts of medical plants were determined to be 2.72~34.15 mg/g in the water extracts and 2.83~34.23 mg/g in the ethanol extracts. The electron-donating abilities (EDA) of the water and ethanol extracts were both above 74% at the low concentration of $50{\mu}g/mL$. The ABTS radical-cation decolorization was above 88% at $100{\mu}g/mL$ concentration in all the extracts of various medicinal plants. The antioxidant protection factor (PF) in the water and ethanol extracts of the Cirsium japonicum var. ussuriense extracts was $1.73{\pm}0.02PF$ and $1.76{\pm}0.01PF$ at $50{\mu}g/mL$ concentration respectively, and was higher than those of the other medicinal-plant extracts. The TBARs inhibition rates of all the medicinal-plant extracts, were above 80% at the $50{\mu}g/mL$ concentration except Hibiscus esculentus. These results confirmed that the various oriental medicinal plants (Hibiscus esculentus, Cirsium japonicum var. ussuriense, Kalopanax pictus and Zizania latifolia) that were included in this study are useful anti-oxidant and functional-food resources.

Application of bio-preservation to enhance food safety: A review

  • Nethma Samadhi Ranathunga;Kaushalya Nadeeshani Wijayasekara;Edirisinghe Dewage Nalaka Sandun Abeyrathne
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Consumers and industry experts frequently have negative perceptions of most chemical preservatives. Although most people concede that they cannot resolve global food waste issues without preservatives, they prefer products without chemical preservatives. Numerous emerging technologies is now surpassing conventional methods for mitigating microbial food deterioration in response to consumer demand and fundamental health and safety considerations, including biological antimicrobial systems such as using food-grade microorganisms and their metabolites primarily originating from microorganisms, plants, and animals. Microbial compounds, including bacteriocins, bacteriophages, and anti-fungal agents, plant extracts such as flavonoids and essential oils; and animal-originated compounds, such as lysozyme, chitosan, and lactoferrin, are considered some of the major bio-preservatives. These natural compounds can be used alone or with other preservatives to improve food safety. Hence, the use of microbes or their metabolic byproducts to extend the shelf life of foods while maintaining safety standards is known as bio-preservation. To manufacture and consume foods in a safe condition, this review primarily aims to broaden knowledge amongst industry professionals and consumers regarding bio-preservation techniques, bio-preservatives, their classifications, and distinctive mechanisms to enhance food safety.

Perilla Frutescens Extract Protects against Scopolamine-Induced Memory Deficits in Mice (스코폴라민으로 유도한 기억력 손상 모델에서 소엽 추출물의 보호 효과)

  • Lee, Jihye;Lee, Eunhong;Jung, Eun Mi;Kim, Dong Hyun;Kim, Sung-kyu;Park, Mi Hee;Jung, Ji Wook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.97-103
    • /
    • 2021
  • Perilla frutescens (P. frutescens) is an important herb used for many purposes such as medicinal, aromatic, and functional food in Asian countries and has beneficial effects such as antioxidant activity, anti-inflammation activity, anti-depression activity, and anxiolytic activity. However, there have been no studies on the protective effect of P. frutescens extract (PFE) on amnesia in vivo. The present study aimed to investigate whether PFE protects memory deficit using a scopolamine-induced mice model and elucidate the underlying mechanisms involved. The protective effect of PFE against scopolamine-induced memory deficits was investigated using Y-maze, passive avoidance, and Morris water maze tests. Furthermore, the potential mechanisms of PFE in improving memory capabilities related to the cholinergic system and antioxidant activity were examined. PFE significantly increased spontaneous alternation in the Y-maze test, step-through latency in the passive avoidance test, and swimming time in the target quadrant in the probe test when compared to the scopolamine-treated group. Likewise, PFE significantly decreased escapes latency in the Morris water maze test. PFE could not regulate cholinergic function in acetylcholine level and acetylcholine esterase activity. However, PFE increased DPPH radical scavenging activity dose-dependently and total polyphenol content was 127.7±1.2 ㎍ GAE/mg. The results showed that the PFE could be a preventive and/or therapeutic candidate for memory and cognitive dysfunction in Alzheimer's disease.

A Kinematic Model Based on the Rear Speed and Steering Angle of Three-Wheeled Agriculture Electric Vehicle (농업용 삼륜구동 전기자동차의 후방 속도 및 조향각에 기반한 운동학적 모델)

  • Choi, Wonsik;Pratama, Pandu Sandi;Supeno, Destiani;Byun, Jaeyoung;Lee, Ensuk;Yang, Jiung;Keefe, Dimas Harris Sean;Jeon, Yeonho;Chung, Sungwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.197-205
    • /
    • 2018
  • In this research, tricycle vehicle simulation based on multi-body environment has been introduced. Mathematical model of tricycle vehicle was developed. In this research the left and right wheel speed are calculated based on the rear steering angle and velocity. The kinematic model for the three - wheel drive system was completed and the results were analyzed using the actual vehicle drawings. Through simulink vehicle performance on linear and rotation movement were simulated. Using the mathematical model the control system can be applied directly to the tricycle vehicle. The simulation result shows that the proposed vehicle model is successfully represent the movement characteristics of the real vehicle. This model assists the vehicle developer to create the controller and understand the vehicle during the development process.

Tribology Characteristics of Hexagonal Shape Surface Textured Reduction Gear in Electric Agricultural Vehicle

  • Choi, Wonsik;Pratama, Pandu Sandi;Byun, Jaeyoung;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • An experimental study was conducted on the wear and friction responses in sliding tests of a micro-textured surface on laser pattern (LP) steel as reduction gear material in electric guided vehicle. In this research, the friction characteristics of laser pattern steel under different micro texture density conditions were investigated. The friction tests were carried out at sliding speeds of 0.06 m/s to 0.34 m/s and at normal loads of 2 to 10 N. Photolithography method was used to create the dimples for surface texturing purpose. Four different specimens having different dimple densities of 10%, 12.5%, 15%, and 20% were observed respectively. In this research, friction conditions as shown in Stribeck curve were investigated. Furthermore, the microscopic surface was observed using scanning electron microscope. It was found that the dimple density had a significant role on the friction characteristics of laser pattern steel conditioned as reduction gear material in an agricultural vehicle. The duty number showed that the friction condition was hydrodynamic regime. The best performance was obtained from 12.5% dimple density with lowest friction coefficient achieved at 0.018771 under the velocity of 0.34 m/s and 10N load.