• Title/Summary/Keyword: Bio energy

Search Result 1,413, Processing Time 0.029 seconds

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.

Influence of Gamma Irradiation on Greening of Mung Bean Seedlings

  • Kim, Jin-Hong;Moon, Yu-Ran;Kim, Jae-Sung;Lee, Min-Hee;Lee, Seung-Sik;Chung, Byung-Yeoup
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Ionizing radiation causes many alterations in photosynthetic machineries. However, there is no information about effects of ionizing radiation on the development of photosynthetic machineries in plants. We investigated the greening of etiolated mung bean seedlings after gamma-irradiation of 50 to 300 Gy. The irradiation inhibited seedling growth with great dependence on the radiation dose. In particular, growth of stems was more affected than that of hypocotyls. Irradiated leaves showed inhibition in growth, aberration in morphology, and yellowing in color depending on the radiation dose. Contents of photosynthetic pigments such as chlorophylls and carotenoids were significantly decreased in the irradiated leaves. The apparent electron transport rate for photosynthesis, ETR, was similarly changed depending on the radiation dose. However, the maximal photochemical efficiency of Photosystem II (PSII), Fv/Fm, was little affected by the irradiation. Moreover, the 50-Gy seedlings maintained the control level of light saturating for photosynthesis and showed slightly higher Fv/Fm values in spite of significant decreases in the photosynthetic pigment content and ETR. These results suggest that the inhibition of the overall photosynthetic capacity couldn’t be causally relatqaed with the repression in the initial development of irradiated seedlings and that the overall photosynthetic machineries can develop and work to some extent as a concerted system for photosynthesis even after exposure to acute doses of ionizing radiation.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas (미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산)

  • Khim, Young-Min;Song, Hyo-Soon;Ahn, Hyoseong;Chun, Seung-Kyu
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

A Study on the Greenhouse Heating of Solar Energy - Latent Heat Storage System - (태양열-잠열축열시스템의 온실보온특성)

  • 송현갑;류영선
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.14-20
    • /
    • 1992
  • For the high quality and low cost agricultural crops in greenhouse cultivation, it is necessary to use natural energy as much as possible. In order to reduce the fossil fuel consumption and maximize the solar energy utilization in greenhouse heating, a latent heat storage material was developed as a relatively highly concentrative solar energy storage medium. And a solar energy-latent heat storage system was designed and constructed. The experimental research on greenhouse heating effect of the system was performed.

  • PDF

A Study on Possibility of Bio-coal Manufacturing using High Moisture Agricultural by- Products (고함수율 농업부산물을 이용한 Bio-coal의 가능성에 대한 연구)

  • Kim, Min-Jung;Park, Kyoung-Joo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • The rapid industrial development is facing problem due to energy depletion in Korea. So that, it can be necessary to develop alternative energy sources. Alternative energy like biofuels can be produced by using waste fuel, which is ecofriendly. As we know, the organic waste was banned to dump in landfill and ocean dumping. The most practicable method usually used to reduce organic waste is getting feedstuff or composting, considering the discharge characteristics of agricultural by-products waste treatment were selected. In this study, bio-coal was made using agriculture by product. Biocoal was prepared by adding 50 g of uniformly mixture into reactor and was carbonized at low temperatures 210, 220, and 230℃. The time of reaction was 1, 2 and 3 hours. Bio-coal approximately was similar to the standard of solid fuels. Other characteristics of fuel were also studied. The experiments which were analyzed were moisture content and calorific value, ash, chlorine, sulfur and heavy metals analysis as mercury, cadmium, lead, arsenic, and chromium. As a result, bio-coal 220℃, 2 hours was the optimal conditions while heating.

Trends of Photosynthetic Bio-solar Energy Conversion Technology (광합성 전자 추출 기반 바이오 태양광 에너지 전환기술 동향)

  • Kim, Yong Jae;Hong, Hyeonaug;Shin, HyeIn;Yun, JaeHyoung;Ryu, WonHyoung
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.233-248
    • /
    • 2018
  • Photosynthesis of plant, algae, and certain types of bacteria can convert solar energy to electrons at high efficiency. There have been many research investigations to utilize this mechanism to develop photosynthetic bio-solar energy systems. In this article, the fundamentals of photosynthetic energy conversion mechanism are explained and various approaches are introduced and discussed.

A Study on making standards on Performance Criteria and Specialized Factors for Bio-Hosing (바이오하우징 성능평가지표 및 특화요소 기준 선정 마련에 관한 연구)

  • Lee, Hyun-Woo;Kim, Sam-Uel;Kim, Won-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.121-129
    • /
    • 2011
  • The concept of bio-housing comes from the new social and culture housing trends. Previous research have shown standards on performance criteria for bio-housing. However some criteria on that research were overlapped because they were merged from various current housing assessment systems. This current research looks on the duplication of criteria which were impossible to evaluate current housing assessment, and make specialized factors for bio-housing developments. Finally the research shows the magnitude of factors for bio-housing performance criteria.

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.284-293
    • /
    • 2019
  • Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.

Development of Hydrophilic Performance Measurement System for Anti-Condensation Using Computer Image (컴퓨터 영상을 이용한 오염방지 친수성능 측정 시스템 개발)

  • Ahn, Byung-Tae;Cho, Sung-Ho;Choi, Sun;Kim, Eun-Kuk;Park, Sang-Soo;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.257-261
    • /
    • 2010
  • Surface energy is the principal factor of anti-condensation. High surface energy appears hydrophilic itself and low surface energy represents hydrophobic itself. The contact angle is widely being used for measurement of surface energy of materials, evaluation of coating performances, measurement of wettability, and so on. However, the existing contact angle measuring system is so expensive for purchasing and complicated, so it takes a lot of time and money to use. This study was conducted to develop the algorithm for evaluating hydrophilic performance through measuring the contact angle of water droplet automatically, and fabricate relatively simple measuring system using a low-cost monochrome camera and image processing. A constant amount of water was firstly allocated on a slide by a micropipette, and then the image of water droplet was captured by monochrome digital camera and sent to a computer. The image was binarized and then reduced noises by labeling. Finally, the contact angle of water droplet was computed by using three points (left, right, and top coordinates), simple linear mathematics, and trigonometric function. The experimental results demonstrated the accuracy and reproducibility of the developed system showing less deviations and deviation ratio.