• 제목/요약/키워드: Bio Chip

검색결과 220건 처리시간 0.032초

Comparison of Gamma Irradiation and Sodium Hypochlorite Treatments to Inactivate Staphylococcus aureus and Pseudomonas aeruginosa Biofilms on Stainless Steel Surfaces

  • Kim, Jang-Ho;Jo, Cheo-Run;Rho, Yong-Taek;Lee, Chun-Bok;Byun, Myung-Woo
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.315-319
    • /
    • 2007
  • Biofilm formation on various surfaces is a well-known phenomenon and it has caused pollution problems, health and safety hazards, and substantial economic loss in many areas including the food industry. In the present study, Gamma irradiation at a dose of 2.0 kGy reduced the bacterial counts of Staphylococcus aureus and Pseudomonas aeruginosa suspensions by 6.7 and >6.5 log CFU/mL, respectively, and 30 ppm of sodium hypochlorite effectively reduced the counts of both bacterial suspensions to below the limit of detection ($<2\;log\;CFU/cm^2$). However, in bacterial biofilms attached to stainless steel, gamma irradiation at a dose of 10.0 kGy reduced the counts of S. aureus attached fur 1 hr and overnight by ${\geq}5.1\;and\;5.0\;log\;CFU/cm^2$, respectively. Gamma irradiation at a dose of 1.0 kGy reduced the counts of P. aeruginosa counts to below the limit of detection ($<2\;log\;CFU/cm^2$). On the contrary, S. aureus and P. aeruginosa cells attached to stainless steel chips were difficult to eliminate using sodium hypochlorite. Four hundred ppm of sodium hypochlorite reduced the counts of S. aureus and P. aeruginosa attached for 1 hr by 2.5 and $3.3\;log\;CFU/cm^2$, respectively.

사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (I) - 디자인 및 수치 해석 - (Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (I) - Design and Numerical Analysis -)

  • 김동성;이세환;권태헌
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1289-1297
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Serpentine Laminating Micromixer (SLM) in the present study, Part 1. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other term, lamination) mechanism is obtained by the successive arrangement of 'F'-shape mixing units in two layers. The chaotic advection is induced by the overall three-dimensional serpentine path of the microchannel. Chaotic mixing performance of the SLM was fully characterized numerically. To compare the mixing performance, a T-type micromixer which has the same width, height and length of the SLM was also designed. The three-dimensional numerical mixing simulations show the superiority of the SLM over the T-type micromixer. From the cross-sectional simulation results of mixing patterns, the chaotic advection effect from the serpentine channel path design acts favorably to realize the ideal lamination of fluid flow as Re increases. Chaotic mixing mechanism, proposed in this study, could be easily integrated in Micro-Total-Analysis-System, Lab-on-a-Chip and so on.

사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (II) - 제작 및 혼합 실험 - (Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (II) - Fabrication and Mixing Experiment -)

  • 김동성;이세환;권태헌
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1298-1306
    • /
    • 2005
  • In this paper, Part II, we realized the Serpentine Laminating Micromirer (SLM) which was proposed in the accompanying paper, Part I, by means of the injection molding process in mass production. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms of splitting/recombination and chaotic advection by the successive arrangement of 'F'-shape mixing units in two layers. Mold inserts for the injection molding process of the SLM were fabricated by SU-8 photolithography and nickel electroplating. The SLM was realized by injection molding of COC (cyclic olefin copolymer) with the fabricated mold inserts and thermal bonding of two injection molded COC substrates. To compare the mixing performance, a T-type micromixer was also fabricated. Mixing performances of micromixers were experimentally characterized in terms of an average mixing color intensity of a pH indicator, phenolphthalein. Experimental results show that the SLM has much better mixing performance than the I-type micromixer and chaotic mixing was successfully achieved from the SLM over the wide range of Reynolds number (Re). The chaotic micromixer, SLM proposed in this study, could be easily integrated in Micro-Total-Analysis- System , Lab-on-a-Chip and so on.

미용/의료용 유연 마이크로 발광 다이오드 디바이스 제작 공정 (Fabrication of Flexible Micro LED for Beauty/Biomedical Applications)

  • 이재희
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.563-569
    • /
    • 2023
  • 마이크로 발광다이오드(LED)는 칩 사이즈가 100마이크로미터 이하인 무기발광재료로 우수한 전기적, 광학적, 기계적 성능 때문에 유연 디스플레이, AR/VR, 바이오 메디컬 분야의 차세대 광원으로 큰 주목을 받고 있다. 특히, 바이오메디컬 분야에 적용하기 위해서는 매우 작은 크기의 마이크로 LED 칩을 원하는 유연 기판에 옮기기 위한 기술이 요구되며, 실제 인간의 얼굴, 장기 등 여러 신체 부위에 적용하기 위해서는 대량의 마이크로 LED 칩을 낮은 정밀 오차, 빠른 속도, 높은 수율로 타겟 기판에 전사하는 것이 중요하다. 본 논문의 목적은 미용/의료용 유연 마이크로 LED 디바이스 제작 공정 방법을 소개하고, 이를 실제 미용/의료 산업에 적용하기 위해 필요한 마이크로 LED 전사 기술을 소개한다. 해당 기술로 제작된 유연 마이크로 LED 디바이스는 피부 질환, 암, 신경질환 등 인간 질병 치료에 널리 활용될 것으로 기대된다.

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Composite Nanofilm of Polypyrrole and Mycosporine-like Amino Acids for UV sensor

  • Jin, Yinhua;Kulkarni, Atul;Qin, Hongyi;Kim, Dae-hwan;Yu, Yeong Wook;Lee, Joon Chul;Kim, Taesung;Moh, Sang Hun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.354.2-354.2
    • /
    • 2016
  • Mycosporine-like amino acids (MAAs) are small secondary metabolites produced by organisms that live in environments with high volumes of sunlight, is an important group of novel bioactive compounds having immense biotechnological poten-tials due to their UV screening properties and Polypyrrole (PPy) is a type of organic polymer formed by polymerization of pyrrole. A novel composite nanofilm (~60 nm) of mycosporine-like amino acid (MAA) and polypyrrole is synthesized by interfacial polymerization technique. This composite nanofilm is conductive and has strong photoresponse. A photoelectric UV sensor is fabricated by depositing the composite film onto a silicon chip. This UV sensor shows good sensitivity, selectivity and stability for UV detection.

  • PDF

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

Functional Expression of SAV3818, a Putative TetR-Family Transcriptional Regulatory Gene from Streptomyces avermitilis, Stimulates Antibiotic Production in Streptomyces Species

  • Duong, Cae Thi Phung;Lee, Han-Na;Choi, Si-Sun;Lee, Sang-Yup;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.136-139
    • /
    • 2009
  • Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. avermitilis ATCC31780. To verify the biological significance of some of the transcriptomics-guided targets, five putative regulatory genes were individually cloned under the strong-and-constitutive promoter of the Streptomyces expression vector pSE34, followed by the transformation into the low-producer S. avermitilis ATCC31267. Among the putative genes tested, three regulatory genes including SAV213, SAV3818, and SAV4023 exhibited stimulatory effects on avermectin production in S. avermitilis ATCC31267. Moreover, overexpression of SAV3818 also stimulated actinorhodin production in both S. coelicolor M145 and S. lividans TK21, implying that the SAV3818, a putative TetR-family transcriptional regulator, could be a global upregulator acting in antibiotic production in Streptomyces species.

A K-Band Low-Power Miniaturized Hyperthermia System

  • Kim, Dong-Ki;Kim, Ki-Hyun;Oh, Jung-Min;Park, Young-Rak;Kwon, Young-Woo
    • Journal of electromagnetic engineering and science
    • /
    • 제9권4호
    • /
    • pp.188-193
    • /
    • 2009
  • A K-band low-power miniaturized planar-type hyperthermia system was developed to replace massive and expensive equipment. The system consists of a VCO with a buffer amplifier, a high-power amplifier module, a 20-dB-coupled line coupler, a chip circulator and two power detectors for signal generation, amplification and power monitoring. All these components have been implemented in planar form on two module blocks. The total size of the hyperthermia system was less than $10\times6.5\times3\;cm^3$. In order to verify the system performance, ablations were carried out on nude mice xenografted with human breast cancer. Ablation results show performance comparable to the massive components-based system. This work shows the feasibility of a low-cost miniaturized hyperthermia system for practical clinical applications.

Numerical Simulation of Micro-Fluidic Flows of the Inkjet Printing Deposition Process for Microfabrication

  • Chau S.W.;Chen S.C.;Liou T.M.;Hsu K.L.;Shih K.C.;Lin Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.113-115
    • /
    • 2003
  • Droplet impinging into a cavity at micro-scale is one of important fluidic issues for microfabrications, e.g. bio-chip applications and inkjet deposition processes in the PLED panel manufacturing. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle jets the droplets into cavities with micron-meter size located on substrates. Due to measurement difficulties at micro-scale, the numerical simulation could serve as an efficient and preliminary way to evaluate the micro-sized droplet impinging behavior into a cavity. The micro-fluidic flow is computed by solving the three-dimensional Navier-Stokes equations through a finite volume discretization. The droplet front is predicted by a volume-of-fluid approach, in which the surface tension is modeled as a function of the fluid concentration. This paper discusses the influence of fluid properties, such as surface tension and fluid viscosity, on micro-fluidic characteristics at different jetting speeds in the deposition process via the proposed numerical approach.

  • PDF