• Title/Summary/Keyword: Binocular parallax

Search Result 26, Processing Time 0.024 seconds

From Broken Visions to Expanded Abstractions (망가진 시선으로부터 확장된 추상까지)

  • Hattler, Max
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.697-712
    • /
    • 2017
  • In recent years, film and animation for cinematic release have embraced stereoscopic vision and the three-dimensional depth it creates for the viewer. The maturation of consumer-level virtual reality (VR) technology simultaneously spurred a wave of media productions set within 3D space, ranging from computer games to pornographic videos, to Academy Award-nominated animated VR short film Pearl. All of these works rely on stereoscopic fusion through stereopsis, that is, the perception of depth produced by the brain from left and right images with the amount of binocular parallax that corresponds to our eyes. They aim to emulate normal human vision. Within more experimental practices however, a fully rendered 3D space might not always be desirable. In my own abstract animation work, I tend to favour 2D flatness and the relative obfuscation of spatial relations it affords, as this underlines the visual abstraction I am pursuing. Not being able to immediately understand what is in front and what is behind can strengthen the desired effects. In 2015, Jeffrey Shaw challenged me to create a stereoscopic work for Animamix Biennale 2015-16, which he co-curated. This prompted me to question how stereoscopy, rather than hyper-defining space within three dimensions, might itself be used to achieve a confusion of spatial perception. And in turn, how abstract and experimental moving image practices can benefit from stereoscopy to open up new visual and narrative opportunities, if used in ways that break with, or go beyond stereoscopic fusion. Noteworthy works which exemplify a range of non-traditional, expanded approaches to binocular vision will be discussed below, followed by a brief introduction of the stereoscopic animation loop III=III which I created for Animamix Biennale. The techniques employed in these works might serve as a toolkit for artists interested in exploring a more experimental, expanded engagement with stereoscopy.

View synthesis with sparse light field for 6DoF immersive video

  • Kwak, Sangwoon;Yun, Joungil;Jeong, Jun-Young;Kim, Youngwook;Ihm, Insung;Cheong, Won-Sik;Seo, Jeongil
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.24-37
    • /
    • 2022
  • Virtual view synthesis, which generates novel views similar to the characteristics of actually acquired images, is an essential technical component for delivering an immersive video with realistic binocular disparity and smooth motion parallax. This is typically achieved in sequence by warping the given images to the designated viewing position, blending warped images, and filling the remaining holes. When considering 6DoF use cases with huge motion, the warping method in patch unit is more preferable than other conventional methods running in pixel unit. Regarding the prior case, the quality of synthesized image is highly relevant to the means of blending. Based on such aspect, we proposed a novel blending architecture that exploits the similarity of the directions of rays and the distribution of depth values. By further employing the proposed method, results showed that more enhanced view was synthesized compared with the well-designed synthesizers used within moving picture expert group (MPEG-I). Moreover, we explained the GPU-based implementation synthesizing and rendering views in the level of real time by considering the applicability for immersive video service.

Research on Infrastructure technology of Stereoscopic Object Expression Utilizing the Grabcut algorithm (Grabcut 알고리즘을 활용한 Stereoscopic 객체표현 기반 기술 연구)

  • Lee, Min ho;Choi, Jin yeong;Lee, Jong hyeok;Cha, Jae sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.151-159
    • /
    • 2018
  • Recently, stereoscopic technology has become a potential for blue ocean as a new growth power industry, and interest in it has been steadily increasing with the development of virtual and augmented reality technologies. Various methods such as binocular parallax and polarized glasses have been developed and used for stereoscopic image expression, but they have limitations such as eye damage, headache, crosstalk and resolution degradation. In this paper, we present a new method of stereoscopic image representation that can overcome the limitations and verify its applicability through basic experiments for object extraction and real - time image representation.

Stereoscopic Camera with a CCD and Two Zoom Lenses (단일 CCD와 두개의 줌렌즈로 구성한 입체 카메라)

  • Lee, Sang-Eun;Jo, Jae-Heung;Jung, Eui-Min;Lee, Kag-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The stereoscopic camera based on the image formation principle on human eyes and the brain is designed and fabricated by using a CCD and two zoom lenses. As two zoom lenses are separated as 65 mm of the human ocular distance with the wide angle of view of $50^{\circ}$ and the variable convergence angle from $0^{\circ}$ to $16^{\circ}$, the camera can be operated by the similar binocular parallax as human eyes. In order to take the dynamic stereoscopic picture, a shutter blade for the selection of the left and right images in turns, an X-cube image combiner fur the composition of these two images through the blade, and a CCD with 60 frames per second are used.

Comparison of the Size of objects in the Virtual Reality Space and real space (가상현실 공간상에서 물체의 크기와 실제 크기간의 비교연구)

  • Kim, Yun-Jung
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.383-398
    • /
    • 2017
  • Virtual Reality contents are being used as media in various fields. In order for the virtual reality contents to be realistic, the scale of the objects in the virtual reality must be the same as the actual size, and the user must feel the same size. However, even if the size of the character in the virtual reality space is made equal to the size in comparison with the size of the character in the reality, the distortion of the size can occur when the user looks at the object in the image with the HMD. In this paper, I investigate the requirements related to size in virtual reality, and try to find out what difference these requirements have in virtual reality and how the difference affects users. Experiments and surveys to compare the size of objects in virtual reality space and the size of objects in real space were conducted to investigate how scale distortion occurs at distant and near places. I hope that this paper will be a useful research for virtual reality developers.

(Distance and Speed Measurements of Moving Object Using Difference Image in Stereo Vision System) (스테레오 비전 시스템에서 차 영상을 이용한 이동 물체의 거리와 속도측정)

  • 허상민;조미령;이상훈;강준길;전형준
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1145-1156
    • /
    • 2002
  • A method to measure the speed and distance of moving object is proposed using the stereo vision system. One of the most important factors for measuring the speed and distance of moving object is the accuracy of object tracking. Accordingly, the background image algorithm is adopted to track the rapidly moving object and the local opening operator algorithm is used to remove the shadow and noise of object. The extraction efficiency of moving object is improved by using the adaptive threshold algorithm independent to variation of brightness. Since the left and right central points are compensated, the more exact speed and distance of object can be measured. Using the background image algorithm and local opening operator algorithm, the computational processes are reduced and it is possible to achieve the real-time processing of the speed and distance of moving object. The simulation results show that background image algorithm can track the moving object more rapidly than any other algorithm. The application of adaptive threshold algorithm improved the extraction efficiency of the target by reducing the candidate areas. Since the central point of the target is compensated by using the binocular parallax, the error of measurement for the speed and distance of moving object is reduced. The error rate of measurement for the distance from the stereo camera to moving object and for the speed of moving object are 2.68% and 3.32%, respectively.

  • PDF