• Title/Summary/Keyword: Bingham lubrication

Search Result 6, Processing Time 0.018 seconds

Numerical Analysis of Non-Newtonian Behavior in the Fluid Film Layer of Bearing Lubrication (베어링 윤활 필름층의 비뉴튼성 거동에 대한 수치적 해석)

  • 김준현;김주현
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.341-350
    • /
    • 2000
  • The study reported in this paper deals with the development for parametric investigation of the influence of the rheological properties of the lubricant in the thermohydrodynamic (THD) film conditions which occur in slider and journal bearings. A parametric investigation based on a Bingham model with a shear yield stress which best fit the experimental pressure is performed for predicting the thickness of the shear Bone in lubricating films with fixed geometry between the stationary and moving surfaces. The results suggest that the shear yield stress for the lubricating film is proportional to the pressure developed in the film within the range of the investigated cases and the shear zone thickness which is of the same order of magnitude as that obtained by the empirical formula is significantly smaller than the fluid film thickness in the lubrication zone.

Analysis of Short Squeeze Film Damperswith Electro-Rheological Fluids (무한 소폭 전기유변 스퀴즈 필름 댐퍼 해석)

  • 정시영
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 1995
  • This paper addresses the lubrication analysis of a short squeeze film damper operating with electro-rheological (ER) fluids which have large and reversible changes in yield shear stresses with respect to an applied electric field. The ER fluids are assumed to be modeled as Bingham fluids. The governing lubrication equation for the ER short squeeze film damper is developed on the basis of a Bingham fluid model, and the equation is subsequently solved in order to investigate the effects of the ER fluids on the damping capability of the damper. It is shown that a substantial increase in damping (both direct and cross coupled) is accomplished by increasing the yield shear stress of the ER fluids. This significant improvement of the damping capability suggests that the ER short squeeze film damper could be very effective for reducing the vibration and controlling the critical speeds of a rotor system.

Electrical and Rheological Behavior of the Anhydrous ER Fluids Based on Chitosan Derivatives as the Dispersion Phases

  • Choi Ung-su;Sung Bo-hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.323-329
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphate suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18 ,1.41 and 1.67 powers of the electric field. On the basis of the experimental results, the newly synthesized chitosan derivative suspensions found to be an ER fluid.

  • PDF

Magnetorheological Finishing (자성유체를 이용한 연마)

  • 신영재;이응숙;황경현;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.775-778
    • /
    • 2000
  • Magnetorheological Finishing(MRF) is a newly developed and recently commercialized for finishing optical components. The magnetorheological fluid consists of a water based suspension of carbonyl iron, nonmagnetic polishing abrasives, and small amounts of stabilizer. Theoretical analysis of MRF, based on Bingham lubrication theory, is illustrated and a correlation between surface shear stress on the workpiece and material removal is obtained.

  • PDF

A Study on the Surface Finishing Technique using Electrorheological Fluid

  • Park, Sung-Jun;Kim, Wook-Bae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • The electrorheological(ER) fluid has been used to the ultraprecision polishing of single crystal silicon as new polishing slurry whose properties such as yield stress and particle structure changed with the application of an electric field. In this work, it is aimed to find the effective parameters in the ER fluid on material removal in the polishing system whose structure is similar to that of the simple hydrodynamic bearing. The generated pressure in the gap between a moving wall and a workpiece, as well as the electric field-induced stress of the mixture of ER fluid-abrasives, is evaluated experimentally, and their influence on the polishing of single crystal silicon is analyzed. Moreover, the behavior of abrasive and ER particles is described.

무한 소폭 전기유변 스퀴즈 필름 댐퍼의 해석

  • 정시영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06b
    • /
    • pp.19-29
    • /
    • 1994
  • Since Winslow (1) has reported an electro - theological (ER) effect which features remarkable and reversible changes in the properties of the fluid due to an imposed external electric field, numerous applications of ER fluids in mechanical devices, such as clutches, control valves, active dampers, and etc. have been proposed to improye dramatical ly their performances (2,3). When the external electric field is imposed to the ER fluid, it behaves as a Bingham fluid, displaying a field dependent yield shear stress which is widely variable. Without the electric field, the ER fluid has a reversible and constant viscosity so that it flows as a Newtonian fluid. Another salient feature of the ER fluid is that the time required for the variation is very short (< 0.001 sec) (4-6). These attractive.characteristics of the ER fluid provide the possibility of the appearance of new engineering technology , for instance, an active vibration control system. Recently, the application of the ER fluid to rotor-bearing systems has been also initiated.

  • PDF