• 제목/요약/키워드: Binding energies

검색결과 155건 처리시간 0.026초

메탄올 산화 반응을 위한 PtNi과 PtRuNi 합금 촉매 (PtNi and PtRuNi Alloy catalysts for Methanol Electrooxidation)

  • 박경원;권부길;최종호;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2001년도 연료전지심포지움 2001논문집
    • /
    • pp.37-42
    • /
    • 2001
  • The electrooxidation of methanol was studied using Pt, PtNi(1.1 and 3:1), PtRuNi and PtRu(1:1) alloy nanoparticles in sulfuric acid solution for application to a direct methanol fuel cell. The PtNi and PtRuNi alloys showed excellent catalytic activities compared to those of pure Pt and PtRu. The role of Ni in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The XPS data confirm that the chemical states of Pt are exclusively metal as well as the presence of metallic Ni, NiO, $Ni(OH)_2$, NiOOH, metallic Ru, $RuO_2$, and $RuO_3$. Negative shifts of the binding energies of Pt for the PtNi alloy nanoparticles were determined by XPS measurements. This can be explained based by assuming that the enhanced activities of PtNi alloys for methanol electrooxidation were caused by the oxide states of Ni and by the change in the electronic structure of Pt component in the alloys.

  • PDF

Coverage Dependent Adsorption Configuration of Phenylalanine on Ge(100)

  • 양세나;윤영상;김예원;황한나;황찬국;김기정;김세훈;이한길
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2010
  • The Adsorption structures of phenylalanine on Ge(100) surface have been investigated as a function of coverage using high-resolution photoemission spectroscopy (HRPES) and density functional (DFT) calculation. To converge these experimental and theoretical conclusion, we systematically performed HRCLPES measurements and DFT calculation for various coverage in the adsorption structures of phenylalanine molecules on the Ge(100) surface. In this study, we found two different adsorption structure as a function of coverage in phenylalanine on Ge(100), monitoring three core level spectra (Ge 3d, C 1s, N 1s, and O 1s) using HRPES Through analysis of the binding energies, we confirmed that O-H dissociated and N dative-bonded structure emerges at low coverage (0.10 ML), which is the same to the result of glycine and alanine on Ge(100) system, whereas O-H dissociation structure also appears at higher coverage. Moreover, we observed the shape of phenyl group being included in phenylalanine is changed from flat to tilting structure at final state using DFT calculation. Through the spectral analysis for phenylalanine, we will demonstrate variation of coverage dependent structural change for phenylalanine on Ge(100) surface using experimental (HRPES) and theoretical studies (DFT calculation).

  • PDF

XPS와 SIMS를 이용한 PSG/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석 (Analysis of the Na Gettering in PSG/SiO2/Al-1%Si Multilevel Thin Films using XPS and SIMS)

  • 김진영
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.467-471
    • /
    • 2016
  • In order to investigate the Na gettering, PSG/$SiO_2$/Al-1%Si multilevel thin films were fabricated. DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition) were utilized for the deposition of Al-1%Si thin films and PSG/$SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling and XPS (X-ray Photoelectron Spectroscopy) analysis were used to determine the distribution and binding energies of Na, Al, Si, O, P and other elements throughout the PSG/$SiO_2$/Al-1%Si multilevel thin films. Na peaks were mainly observed at the the PSG/$SiO_2$ interface and at the $SiO_2$/Al-1%Si interfaces. Na impurity gettering in PSG/$SiO_2$/Al-1%Si multilevel thin films is considered to be caused by a segregation type of gettering. The chemical state of Si and O elements in PSG passivation appears to be $SiO_2$.

Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2×n Surface

  • Oh, Seung-Chul;Kim, Ki-Wan;Mamun, Abdulla H.;Lee, Ha-Jin;Hahn, Jae-Rayng
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.162-167
    • /
    • 2010
  • We investigated the adsorption and desorption characteristics of benzene molecules on $Si(001)-2{\times}n$ surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a $Si(001)-2{\times}n$ surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twisted-bridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface.

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin;Ma, Hai-Xia;Li, Jun-Feng;Gao, Rong;Song, Ji-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2897-2902
    • /
    • 2010
  • Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Effect of Phonons on Valley Depolarization in Monolayer WSe2

  • Chellappan, Vijila;Pang, Ai Lin Christina;Sarkar, Soumya;Ooi, Zi En;Goh, Kuan Eng Johnson
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.766-773
    • /
    • 2018
  • In this paper, temperature dependence of the excitonic bands in a mechanically exfoliated tungsten diselenide ($WSe_2$) monolayer is studied using photoluminescence and circular dichroic photoluminescence (PL) in the temperature range between 8 and 300 K. The peak energies associated with the neutral exciton (A), charged exciton (trion) and localized excitons are extracted from the PL spectra revealing a trion binding energy of around 30 meV. The circular dichroic PL measured at 8 K shows about 45% valley polarisation that sharply reduces with increasing temperature to 5% at 300 K with photoexcitation energy of 1.96 eV. A detailed analysis of the emission line-width suggests that the rapid decrease of valley polarisation with the increase of temperature is caused by the strong exciton-phonon interactions which efficiently scatter the excitons into different excitonic states that are easily accessible due to the supply of excess photoexcitation energy. The emission line-width broadening with the increase of temperature indicate residual exciton dephasing lifetime < 100 fs, that correlates with the observed rapid valley depolarisation.

VALENCE BAND PHOTOEMISSION STUDY OF Fe OVERLAYERS ON Cr

  • Kang, J.S.;Hong, J.H.;Jeong, J.I.;Hwang, D.W.;Min, B.I.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.442-446
    • /
    • 1995
  • Electronic structures of Fe overlayers on Cr(Fe/Cr) films, with an Fe coverage of $1-20{\AA}$, have been investigated by using photoemission spectroscopy. Experimental results are compared with supercell band structure calculations for a system with monolayer (ML) Fe on each side of five layer Cr, Fe(1ML)/Cr(5ML)/Fe(1ML). The extracted Fe 3d partial spectral weight in Fe/Cr exhibits very interesting features for very thin Fe overlayers. First, a sharp emissionnear the Fermi energy is observed, which is expected to originate primarily from hybridization between Fe and Cr 3d electrons at the Fe/Cr interface, and partially from the Fe 3d surface states in the Fe overlayer. Second, other structures are observed at higher binding energies which resemble the Cr 3d valence bands, also suggesting large hybridization between Fe and Cr 3d states at the Fe/Cr interface. These conjectures are confirmed by band structure calculations for Fe(1ML)/Cr(5ML)/Fe(1ML).

  • PDF

DC 스퍼터링을 이용한 소다라임 유리 기판상에 2차원 황화텅스텐 박막 형성 공정 (DC Sputtering Process of 2-Dimensional Tungsten Disulfide Thin Films on Soda-Lime Glass Substrates)

  • 마상민;권상직;조의식
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.31-35
    • /
    • 2018
  • Tungsten disulfide($WS_2$) thin films were directly deposited by direct-current(DC) sputtering and annealed by rapid thermal processing(RTP) to materialize two-dimensional p-type transition metal dichalcogenide (TMDC) thin films on soda-lime glass substrates without any complicated exfoliation/transfer process. $WS_2$ thin films deposited at various DC sputtering powers from 80 W to 160W were annealed at different temperatures from $400^{\circ}C$ to $550^{\circ}C$ considering the melting temperature of soda-lime glass. The optical microscope results showed the stable surface morphologies of the $WS_2$ thin films without any defects. The X-ray photoelectron spectroscopy (XPS) results and the Hall measurement results showed stable binding energies of W and S and high carrier mobilities of $WS_2$ thin films.

Fe(110) 표면의 피리딘 옥심 결합 메커니즘 및 전자 구조 해명: 전산 연구 (Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: A Computational Study)

  • 하산 르가즈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.255-256
    • /
    • 2023
  • The development of corrosion inhibitors with outstanding performance is a never-ending and complex process engaged in by researchers, engineers and practitioners. Computational assessment of organic corrosion inhibitors performance is a crucial step towards the design of new task-pecific materials. Herein, electronic features, adsorption characteristics and bonding mechanisms of two pyridine oximes, namely 2-pyridylaldoxime (2POH) and 3-pyridylaldoxime (3POH) with the iron surface were investigated using molecular dynamics (MD), and self-consistent-charge density-unctional tight-binding (SCC-DFTB) simulations. SCC-DFTB simulations revealed that 3POH molecule can form covalent bonds with iron atoms in its neutral and protonated states, while 2POH molecule can only bond with iron through its protonated form, resulting in interaction energies of -2.534, -2.007, -1.897, and -0.007 eV for 3POH, 3POH+, 2POH+, and 2POH, respectively. Projected density of states (PDOSs) analysis of pyridines-Fe(110) interactions indicated that pyridine molecules chemically adsorbed on the iron surface.

  • PDF

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park;Sung-Ho Hahm
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.425-431
    • /
    • 2023
  • An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.